HomeHome Intuitionistic Logic Explorer
Theorem List (p. 110 of 133)
< Previous  Next >
Browser slow? Try the
Unicode version.

Mirrors  >  Metamath Home Page  >  ILE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Theorem List for Intuitionistic Logic Explorer - 10901-11000   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremsqrtlei 10901 Square root is monotonic. (Contributed by NM, 3-Aug-1999.)
 |-  A  e.  RR   &    |-  B  e.  RR   =>    |-  ( ( 0  <_  A  /\  0  <_  B )  ->  ( A  <_  B  <-> 
 ( sqr `  A )  <_  ( sqr `  B ) ) )
 
Theoremsqrtlti 10902 Square root is strictly monotonic. (Contributed by Roy F. Longton, 8-Aug-2005.)
 |-  A  e.  RR   &    |-  B  e.  RR   =>    |-  ( ( 0  <_  A  /\  0  <_  B )  ->  ( A  <  B  <-> 
 ( sqr `  A )  <  ( sqr `  B ) ) )
 
Theoremabslti 10903 Absolute value and 'less than' relation. (Contributed by NM, 6-Apr-2005.)
 |-  A  e.  RR   &    |-  B  e.  RR   =>    |-  ( ( abs `  A )  <  B  <->  ( -u B  <  A  /\  A  <  B ) )
 
Theoremabslei 10904 Absolute value and 'less than or equal to' relation. (Contributed by NM, 6-Apr-2005.)
 |-  A  e.  RR   &    |-  B  e.  RR   =>    |-  ( ( abs `  A )  <_  B  <->  ( -u B  <_  A  /\  A  <_  B ) )
 
Theoremabsvalsqi 10905 Square of value of absolute value function. (Contributed by NM, 2-Oct-1999.)
 |-  A  e.  CC   =>    |-  ( ( abs `  A ) ^ 2
 )  =  ( A  x.  ( * `  A ) )
 
Theoremabsvalsq2i 10906 Square of value of absolute value function. (Contributed by NM, 2-Oct-1999.)
 |-  A  e.  CC   =>    |-  ( ( abs `  A ) ^ 2
 )  =  ( ( ( Re `  A ) ^ 2 )  +  ( ( Im `  A ) ^ 2
 ) )
 
Theoremabscli 10907 Real closure of absolute value. (Contributed by NM, 2-Aug-1999.)
 |-  A  e.  CC   =>    |-  ( abs `  A )  e.  RR
 
Theoremabsge0i 10908 Absolute value is nonnegative. (Contributed by NM, 2-Aug-1999.)
 |-  A  e.  CC   =>    |-  0  <_  ( abs `  A )
 
Theoremabsval2i 10909 Value of absolute value function. Definition 10.36 of [Gleason] p. 133. (Contributed by NM, 2-Oct-1999.)
 |-  A  e.  CC   =>    |-  ( abs `  A )  =  ( sqr `  ( ( ( Re
 `  A ) ^
 2 )  +  (
 ( Im `  A ) ^ 2 ) ) )
 
Theoremabs00i 10910 The absolute value of a number is zero iff the number is zero. Proposition 10-3.7(c) of [Gleason] p. 133. (Contributed by NM, 28-Jul-1999.)
 |-  A  e.  CC   =>    |-  ( ( abs `  A )  =  0  <->  A  =  0 )
 
Theoremabsgt0api 10911 The absolute value of a nonzero number is positive. Remark in [Apostol] p. 363. (Contributed by NM, 1-Oct-1999.)
 |-  A  e.  CC   =>    |-  ( A #  0  <->  0  <  ( abs `  A ) )
 
Theoremabsnegi 10912 Absolute value of negative. (Contributed by NM, 2-Aug-1999.)
 |-  A  e.  CC   =>    |-  ( abs `  -u A )  =  ( abs `  A )
 
Theoremabscji 10913 The absolute value of a number and its conjugate are the same. Proposition 10-3.7(b) of [Gleason] p. 133. (Contributed by NM, 2-Oct-1999.)
 |-  A  e.  CC   =>    |-  ( abs `  ( * `  A ) )  =  ( abs `  A )
 
Theoremreleabsi 10914 The real part of a number is less than or equal to its absolute value. Proposition 10-3.7(d) of [Gleason] p. 133. (Contributed by NM, 2-Oct-1999.)
 |-  A  e.  CC   =>    |-  ( Re `  A )  <_  ( abs `  A )
 
Theoremabssubi 10915 Swapping order of subtraction doesn't change the absolute value. Example of [Apostol] p. 363. (Contributed by NM, 1-Oct-1999.)
 |-  A  e.  CC   &    |-  B  e.  CC   =>    |-  ( abs `  ( A  -  B ) )  =  ( abs `  ( B  -  A ) )
 
Theoremabsmuli 10916 Absolute value distributes over multiplication. Proposition 10-3.7(f) of [Gleason] p. 133. (Contributed by NM, 1-Oct-1999.)
 |-  A  e.  CC   &    |-  B  e.  CC   =>    |-  ( abs `  ( A  x.  B ) )  =  ( ( abs `  A )  x.  ( abs `  B ) )
 
Theoremsqabsaddi 10917 Square of absolute value of sum. Proposition 10-3.7(g) of [Gleason] p. 133. (Contributed by NM, 2-Oct-1999.)
 |-  A  e.  CC   &    |-  B  e.  CC   =>    |-  ( ( abs `  ( A  +  B )
 ) ^ 2 )  =  ( ( ( ( abs `  A ) ^ 2 )  +  ( ( abs `  B ) ^ 2 ) )  +  ( 2  x.  ( Re `  ( A  x.  ( * `  B ) ) ) ) )
 
Theoremsqabssubi 10918 Square of absolute value of difference. (Contributed by Steve Rodriguez, 20-Jan-2007.)
 |-  A  e.  CC   &    |-  B  e.  CC   =>    |-  ( ( abs `  ( A  -  B ) ) ^ 2 )  =  ( ( ( ( abs `  A ) ^ 2 )  +  ( ( abs `  B ) ^ 2 ) )  -  ( 2  x.  ( Re `  ( A  x.  ( * `  B ) ) ) ) )
 
Theoremabsdivapzi 10919 Absolute value distributes over division. (Contributed by Jim Kingdon, 13-Aug-2021.)
 |-  A  e.  CC   &    |-  B  e.  CC   =>    |-  ( B #  0  ->  ( abs `  ( A  /  B ) )  =  ( ( abs `  A )  /  ( abs `  B ) ) )
 
Theoremabstrii 10920 Triangle inequality for absolute value. Proposition 10-3.7(h) of [Gleason] p. 133. This is Metamath 100 proof #91. (Contributed by NM, 2-Oct-1999.)
 |-  A  e.  CC   &    |-  B  e.  CC   =>    |-  ( abs `  ( A  +  B )
 )  <_  ( ( abs `  A )  +  ( abs `  B )
 )
 
Theoremabs3difi 10921 Absolute value of differences around common element. (Contributed by NM, 2-Oct-1999.)
 |-  A  e.  CC   &    |-  B  e.  CC   &    |-  C  e.  CC   =>    |-  ( abs `  ( A  -  B ) )  <_  ( ( abs `  ( A  -  C ) )  +  ( abs `  ( C  -  B ) ) )
 
Theoremabs3lemi 10922 Lemma involving absolute value of differences. (Contributed by NM, 2-Oct-1999.)
 |-  A  e.  CC   &    |-  B  e.  CC   &    |-  C  e.  CC   &    |-  D  e.  RR   =>    |-  ( ( ( abs `  ( A  -  C ) )  <  ( D 
 /  2 )  /\  ( abs `  ( C  -  B ) )  < 
 ( D  /  2
 ) )  ->  ( abs `  ( A  -  B ) )  <  D )
 
Theoremrpsqrtcld 10923 The square root of a positive real is positive. (Contributed by Mario Carneiro, 29-May-2016.)
 |-  ( ph  ->  A  e.  RR+ )   =>    |-  ( ph  ->  ( sqr `  A )  e.  RR+ )
 
Theoremsqrtgt0d 10924 The square root of a positive real is positive. (Contributed by Mario Carneiro, 29-May-2016.)
 |-  ( ph  ->  A  e.  RR+ )   =>    |-  ( ph  ->  0  <  ( sqr `  A ) )
 
Theoremabsnidd 10925 A negative number is the negative of its own absolute value. (Contributed by Mario Carneiro, 29-May-2016.)
 |-  ( ph  ->  A  e.  RR )   &    |-  ( ph  ->  A 
 <_  0 )   =>    |-  ( ph  ->  ( abs `  A )  =  -u A )
 
Theoremleabsd 10926 A real number is less than or equal to its absolute value. (Contributed by Mario Carneiro, 29-May-2016.)
 |-  ( ph  ->  A  e.  RR )   =>    |-  ( ph  ->  A  <_  ( abs `  A ) )
 
Theoremabsred 10927 Absolute value of a real number. (Contributed by Mario Carneiro, 29-May-2016.)
 |-  ( ph  ->  A  e.  RR )   =>    |-  ( ph  ->  ( abs `  A )  =  ( sqr `  ( A ^ 2 ) ) )
 
Theoremresqrtcld 10928 The square root of a nonnegative real is a real. (Contributed by Mario Carneiro, 29-May-2016.)
 |-  ( ph  ->  A  e.  RR )   &    |-  ( ph  ->  0 
 <_  A )   =>    |-  ( ph  ->  ( sqr `  A )  e. 
 RR )
 
Theoremsqrtmsqd 10929 Square root of square. (Contributed by Mario Carneiro, 29-May-2016.)
 |-  ( ph  ->  A  e.  RR )   &    |-  ( ph  ->  0 
 <_  A )   =>    |-  ( ph  ->  ( sqr `  ( A  x.  A ) )  =  A )
 
Theoremsqrtsqd 10930 Square root of square. (Contributed by Mario Carneiro, 29-May-2016.)
 |-  ( ph  ->  A  e.  RR )   &    |-  ( ph  ->  0 
 <_  A )   =>    |-  ( ph  ->  ( sqr `  ( A ^
 2 ) )  =  A )
 
Theoremsqrtge0d 10931 The square root of a nonnegative real is nonnegative. (Contributed by Mario Carneiro, 29-May-2016.)
 |-  ( ph  ->  A  e.  RR )   &    |-  ( ph  ->  0 
 <_  A )   =>    |-  ( ph  ->  0  <_  ( sqr `  A ) )
 
Theoremabsidd 10932 A nonnegative number is its own absolute value. (Contributed by Mario Carneiro, 29-May-2016.)
 |-  ( ph  ->  A  e.  RR )   &    |-  ( ph  ->  0 
 <_  A )   =>    |-  ( ph  ->  ( abs `  A )  =  A )
 
Theoremsqrtdivd 10933 Square root distributes over division. (Contributed by Mario Carneiro, 29-May-2016.)
 |-  ( ph  ->  A  e.  RR )   &    |-  ( ph  ->  0 
 <_  A )   &    |-  ( ph  ->  B  e.  RR+ )   =>    |-  ( ph  ->  ( sqr `  ( A  /  B ) )  =  ( ( sqr `  A )  /  ( sqr `  B ) ) )
 
Theoremsqrtmuld 10934 Square root distributes over multiplication. (Contributed by Mario Carneiro, 29-May-2016.)
 |-  ( ph  ->  A  e.  RR )   &    |-  ( ph  ->  0 
 <_  A )   &    |-  ( ph  ->  B  e.  RR )   &    |-  ( ph  ->  0  <_  B )   =>    |-  ( ph  ->  ( sqr `  ( A  x.  B ) )  =  ( ( sqr `  A )  x.  ( sqr `  B ) ) )
 
Theoremsqrtsq2d 10935 Relationship between square root and squares. (Contributed by Mario Carneiro, 29-May-2016.)
 |-  ( ph  ->  A  e.  RR )   &    |-  ( ph  ->  0 
 <_  A )   &    |-  ( ph  ->  B  e.  RR )   &    |-  ( ph  ->  0  <_  B )   =>    |-  ( ph  ->  (
 ( sqr `  A )  =  B  <->  A  =  ( B ^ 2 ) ) )
 
Theoremsqrtled 10936 Square root is monotonic. (Contributed by Mario Carneiro, 29-May-2016.)
 |-  ( ph  ->  A  e.  RR )   &    |-  ( ph  ->  0 
 <_  A )   &    |-  ( ph  ->  B  e.  RR )   &    |-  ( ph  ->  0  <_  B )   =>    |-  ( ph  ->  ( A  <_  B  <->  ( sqr `  A )  <_  ( sqr `  B ) ) )
 
Theoremsqrtltd 10937 Square root is strictly monotonic. (Contributed by Mario Carneiro, 29-May-2016.)
 |-  ( ph  ->  A  e.  RR )   &    |-  ( ph  ->  0 
 <_  A )   &    |-  ( ph  ->  B  e.  RR )   &    |-  ( ph  ->  0  <_  B )   =>    |-  ( ph  ->  ( A  <  B  <->  ( sqr `  A )  <  ( sqr `  B ) ) )
 
Theoremsqr11d 10938 The square root function is one-to-one. (Contributed by Mario Carneiro, 29-May-2016.)
 |-  ( ph  ->  A  e.  RR )   &    |-  ( ph  ->  0 
 <_  A )   &    |-  ( ph  ->  B  e.  RR )   &    |-  ( ph  ->  0  <_  B )   &    |-  ( ph  ->  ( sqr `  A )  =  ( sqr `  B ) )   =>    |-  ( ph  ->  A  =  B )
 
Theoremabsltd 10939 Absolute value and 'less than' relation. (Contributed by Mario Carneiro, 29-May-2016.)
 |-  ( ph  ->  A  e.  RR )   &    |-  ( ph  ->  B  e.  RR )   =>    |-  ( ph  ->  ( ( abs `  A )  <  B  <->  ( -u B  <  A  /\  A  <  B ) ) )
 
Theoremabsled 10940 Absolute value and 'less than or equal to' relation. (Contributed by Mario Carneiro, 29-May-2016.)
 |-  ( ph  ->  A  e.  RR )   &    |-  ( ph  ->  B  e.  RR )   =>    |-  ( ph  ->  ( ( abs `  A )  <_  B  <->  ( -u B  <_  A  /\  A  <_  B ) ) )
 
Theoremabssubge0d 10941 Absolute value of a nonnegative difference. (Contributed by Mario Carneiro, 29-May-2016.)
 |-  ( ph  ->  A  e.  RR )   &    |-  ( ph  ->  B  e.  RR )   &    |-  ( ph  ->  A  <_  B )   =>    |-  ( ph  ->  ( abs `  ( B  -  A ) )  =  ( B  -  A ) )
 
Theoremabssuble0d 10942 Absolute value of a nonpositive difference. (Contributed by Mario Carneiro, 29-May-2016.)
 |-  ( ph  ->  A  e.  RR )   &    |-  ( ph  ->  B  e.  RR )   &    |-  ( ph  ->  A  <_  B )   =>    |-  ( ph  ->  ( abs `  ( A  -  B ) )  =  ( B  -  A ) )
 
Theoremabsdifltd 10943 The absolute value of a difference and 'less than' relation. (Contributed by Mario Carneiro, 29-May-2016.)
 |-  ( ph  ->  A  e.  RR )   &    |-  ( ph  ->  B  e.  RR )   &    |-  ( ph  ->  C  e.  RR )   =>    |-  ( ph  ->  (
 ( abs `  ( A  -  B ) )  <  C 
 <->  ( ( B  -  C )  <  A  /\  A  <  ( B  +  C ) ) ) )
 
Theoremabsdifled 10944 The absolute value of a difference and 'less than or equal to' relation. (Contributed by Mario Carneiro, 29-May-2016.)
 |-  ( ph  ->  A  e.  RR )   &    |-  ( ph  ->  B  e.  RR )   &    |-  ( ph  ->  C  e.  RR )   =>    |-  ( ph  ->  (
 ( abs `  ( A  -  B ) )  <_  C 
 <->  ( ( B  -  C )  <_  A  /\  A  <_  ( B  +  C ) ) ) )
 
Theoremicodiamlt 10945 Two elements in a half-open interval have separation strictly less than the difference between the endpoints. (Contributed by Stefan O'Rear, 12-Sep-2014.)
 |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  ( A [,) B )  /\  D  e.  ( A [,) B ) ) )  ->  ( abs `  ( C  -  D ) )  < 
 ( B  -  A ) )
 
Theoremabscld 10946 Real closure of absolute value. (Contributed by Mario Carneiro, 29-May-2016.)
 |-  ( ph  ->  A  e.  CC )   =>    |-  ( ph  ->  ( abs `  A )  e. 
 RR )
 
Theoremabsvalsqd 10947 Square of value of absolute value function. (Contributed by Mario Carneiro, 29-May-2016.)
 |-  ( ph  ->  A  e.  CC )   =>    |-  ( ph  ->  (
 ( abs `  A ) ^ 2 )  =  ( A  x.  ( * `  A ) ) )
 
Theoremabsvalsq2d 10948 Square of value of absolute value function. (Contributed by Mario Carneiro, 29-May-2016.)
 |-  ( ph  ->  A  e.  CC )   =>    |-  ( ph  ->  (
 ( abs `  A ) ^ 2 )  =  ( ( ( Re
 `  A ) ^
 2 )  +  (
 ( Im `  A ) ^ 2 ) ) )
 
Theoremabsge0d 10949 Absolute value is nonnegative. (Contributed by Mario Carneiro, 29-May-2016.)
 |-  ( ph  ->  A  e.  CC )   =>    |-  ( ph  ->  0  <_  ( abs `  A ) )
 
Theoremabsval2d 10950 Value of absolute value function. Definition 10.36 of [Gleason] p. 133. (Contributed by Mario Carneiro, 29-May-2016.)
 |-  ( ph  ->  A  e.  CC )   =>    |-  ( ph  ->  ( abs `  A )  =  ( sqr `  (
 ( ( Re `  A ) ^ 2
 )  +  ( ( Im `  A ) ^ 2 ) ) ) )
 
Theoremabs00d 10951 The absolute value of a number is zero iff the number is zero. Proposition 10-3.7(c) of [Gleason] p. 133. (Contributed by Mario Carneiro, 29-May-2016.)
 |-  ( ph  ->  A  e.  CC )   &    |-  ( ph  ->  ( abs `  A )  =  0 )   =>    |-  ( ph  ->  A  =  0 )
 
Theoremabsne0d 10952 The absolute value of a number is zero iff the number is zero. Proposition 10-3.7(c) of [Gleason] p. 133. (Contributed by Mario Carneiro, 29-May-2016.)
 |-  ( ph  ->  A  e.  CC )   &    |-  ( ph  ->  A  =/=  0 )   =>    |-  ( ph  ->  ( abs `  A )  =/=  0 )
 
Theoremabsrpclapd 10953 The absolute value of a complex number apart from zero is a positive real. (Contributed by Jim Kingdon, 13-Aug-2021.)
 |-  ( ph  ->  A  e.  CC )   &    |-  ( ph  ->  A #  0 )   =>    |-  ( ph  ->  ( abs `  A )  e.  RR+ )
 
Theoremabsnegd 10954 Absolute value of negative. (Contributed by Mario Carneiro, 29-May-2016.)
 |-  ( ph  ->  A  e.  CC )   =>    |-  ( ph  ->  ( abs `  -u A )  =  ( abs `  A ) )
 
Theoremabscjd 10955 The absolute value of a number and its conjugate are the same. Proposition 10-3.7(b) of [Gleason] p. 133. (Contributed by Mario Carneiro, 29-May-2016.)
 |-  ( ph  ->  A  e.  CC )   =>    |-  ( ph  ->  ( abs `  ( * `  A ) )  =  ( abs `  A ) )
 
Theoremreleabsd 10956 The real part of a number is less than or equal to its absolute value. Proposition 10-3.7(d) of [Gleason] p. 133. (Contributed by Mario Carneiro, 29-May-2016.)
 |-  ( ph  ->  A  e.  CC )   =>    |-  ( ph  ->  ( Re `  A )  <_  ( abs `  A )
 )
 
Theoremabsexpd 10957 Absolute value of positive integer exponentiation. (Contributed by Mario Carneiro, 29-May-2016.)
 |-  ( ph  ->  A  e.  CC )   &    |-  ( ph  ->  N  e.  NN0 )   =>    |-  ( ph  ->  ( abs `  ( A ^ N ) )  =  ( ( abs `  A ) ^ N ) )
 
Theoremabssubd 10958 Swapping order of subtraction doesn't change the absolute value. Example of [Apostol] p. 363. (Contributed by Mario Carneiro, 29-May-2016.)
 |-  ( ph  ->  A  e.  CC )   &    |-  ( ph  ->  B  e.  CC )   =>    |-  ( ph  ->  ( abs `  ( A  -  B ) )  =  ( abs `  ( B  -  A ) ) )
 
Theoremabsmuld 10959 Absolute value distributes over multiplication. Proposition 10-3.7(f) of [Gleason] p. 133. (Contributed by Mario Carneiro, 29-May-2016.)
 |-  ( ph  ->  A  e.  CC )   &    |-  ( ph  ->  B  e.  CC )   =>    |-  ( ph  ->  ( abs `  ( A  x.  B ) )  =  ( ( abs `  A )  x.  ( abs `  B ) ) )
 
Theoremabsdivapd 10960 Absolute value distributes over division. (Contributed by Jim Kingdon, 13-Aug-2021.)
 |-  ( ph  ->  A  e.  CC )   &    |-  ( ph  ->  B  e.  CC )   &    |-  ( ph  ->  B #  0 )   =>    |-  ( ph  ->  ( abs `  ( A  /  B ) )  =  ( ( abs `  A )  /  ( abs `  B ) ) )
 
Theoremabstrid 10961 Triangle inequality for absolute value. Proposition 10-3.7(h) of [Gleason] p. 133. (Contributed by Mario Carneiro, 29-May-2016.)
 |-  ( ph  ->  A  e.  CC )   &    |-  ( ph  ->  B  e.  CC )   =>    |-  ( ph  ->  ( abs `  ( A  +  B ) )  <_  ( ( abs `  A )  +  ( abs `  B ) ) )
 
Theoremabs2difd 10962 Difference of absolute values. (Contributed by Mario Carneiro, 29-May-2016.)
 |-  ( ph  ->  A  e.  CC )   &    |-  ( ph  ->  B  e.  CC )   =>    |-  ( ph  ->  ( ( abs `  A )  -  ( abs `  B ) )  <_  ( abs `  ( A  -  B ) ) )
 
Theoremabs2dif2d 10963 Difference of absolute values. (Contributed by Mario Carneiro, 29-May-2016.)
 |-  ( ph  ->  A  e.  CC )   &    |-  ( ph  ->  B  e.  CC )   =>    |-  ( ph  ->  ( abs `  ( A  -  B ) )  <_  ( ( abs `  A )  +  ( abs `  B ) ) )
 
Theoremabs2difabsd 10964 Absolute value of difference of absolute values. (Contributed by Mario Carneiro, 29-May-2016.)
 |-  ( ph  ->  A  e.  CC )   &    |-  ( ph  ->  B  e.  CC )   =>    |-  ( ph  ->  ( abs `  ( ( abs `  A )  -  ( abs `  B )
 ) )  <_  ( abs `  ( A  -  B ) ) )
 
Theoremabs3difd 10965 Absolute value of differences around common element. (Contributed by Mario Carneiro, 29-May-2016.)
 |-  ( ph  ->  A  e.  CC )   &    |-  ( ph  ->  B  e.  CC )   &    |-  ( ph  ->  C  e.  CC )   =>    |-  ( ph  ->  ( abs `  ( A  -  B ) )  <_  ( ( abs `  ( A  -  C ) )  +  ( abs `  ( C  -  B ) ) ) )
 
Theoremabs3lemd 10966 Lemma involving absolute value of differences. (Contributed by Mario Carneiro, 29-May-2016.)
 |-  ( ph  ->  A  e.  CC )   &    |-  ( ph  ->  B  e.  CC )   &    |-  ( ph  ->  C  e.  CC )   &    |-  ( ph  ->  D  e.  RR )   &    |-  ( ph  ->  ( abs `  ( A  -  C ) )  < 
 ( D  /  2
 ) )   &    |-  ( ph  ->  ( abs `  ( C  -  B ) )  < 
 ( D  /  2
 ) )   =>    |-  ( ph  ->  ( abs `  ( A  -  B ) )  <  D )
 
Theoremqdenre 10967* The rational numbers are dense in 
RR: any real number can be approximated with arbitrary precision by a rational number. For order theoretic density, see qbtwnre 10027. (Contributed by BJ, 15-Oct-2021.)
 |-  ( ( A  e.  RR  /\  B  e.  RR+ )  ->  E. x  e.  QQ  ( abs `  ( x  -  A ) )  <  B )
 
4.7.5  The maximum of two real numbers
 
Theoremmaxcom 10968 The maximum of two reals is commutative. Lemma 3.9 of [Geuvers], p. 10. (Contributed by Jim Kingdon, 21-Dec-2021.)
 |- 
 sup ( { A ,  B } ,  RR ,  <  )  =  sup ( { B ,  A } ,  RR ,  <  )
 
Theoremmaxabsle 10969 An upper bound for  { A ,  B }. (Contributed by Jim Kingdon, 20-Dec-2021.)
 |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  A  <_  (
 ( ( A  +  B )  +  ( abs `  ( A  -  B ) ) ) 
 /  2 ) )
 
Theoremmaxleim 10970 Value of maximum when we know which number is larger. (Contributed by Jim Kingdon, 21-Dec-2021.)
 |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A  <_  B 
 ->  sup ( { A ,  B } ,  RR ,  <  )  =  B ) )
 
Theoremmaxabslemab 10971 Lemma for maxabs 10974. A variation of maxleim 10970- that is, if we know which of two real numbers is larger, we know the maximum of the two. (Contributed by Jim Kingdon, 21-Dec-2021.)
 |-  ( ph  ->  A  e.  RR )   &    |-  ( ph  ->  B  e.  RR )   &    |-  ( ph  ->  A  <  B )   =>    |-  ( ph  ->  (
 ( ( A  +  B )  +  ( abs `  ( A  -  B ) ) ) 
 /  2 )  =  B )
 
Theoremmaxabslemlub 10972 Lemma for maxabs 10974. A least upper bound for  { A ,  B }. (Contributed by Jim Kingdon, 20-Dec-2021.)
 |-  ( ph  ->  A  e.  RR )   &    |-  ( ph  ->  B  e.  RR )   &    |-  ( ph  ->  C  e.  RR )   &    |-  ( ph  ->  C  <  ( ( ( A  +  B )  +  ( abs `  ( A  -  B ) ) ) 
 /  2 ) )   =>    |-  ( ph  ->  ( C  <  A  \/  C  <  B ) )
 
Theoremmaxabslemval 10973* Lemma for maxabs 10974. Value of the supremum. (Contributed by Jim Kingdon, 22-Dec-2021.)
 |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( ( ( ( A  +  B )  +  ( abs `  ( A  -  B ) ) )  / 
 2 )  e.  RR  /\ 
 A. x  e.  { A ,  B }  -.  ( ( ( A  +  B )  +  ( abs `  ( A  -  B ) ) ) 
 /  2 )  < 
 x  /\  A. x  e. 
 RR  ( x  < 
 ( ( ( A  +  B )  +  ( abs `  ( A  -  B ) ) ) 
 /  2 )  ->  E. z  e.  { A ,  B } x  < 
 z ) ) )
 
Theoremmaxabs 10974 Maximum of two real numbers in terms of absolute value. (Contributed by Jim Kingdon, 20-Dec-2021.)
 |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  sup ( { A ,  B } ,  RR ,  <  )  =  ( ( ( A  +  B )  +  ( abs `  ( A  -  B ) ) ) 
 /  2 ) )
 
Theoremmaxcl 10975 The maximum of two real numbers is a real number. (Contributed by Jim Kingdon, 22-Dec-2021.)
 |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  sup ( { A ,  B } ,  RR ,  <  )  e.  RR )
 
Theoremmaxle1 10976 The maximum of two reals is no smaller than the first real. Lemma 3.10 of [Geuvers], p. 10. (Contributed by Jim Kingdon, 21-Dec-2021.)
 |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  A  <_  sup ( { A ,  B } ,  RR ,  <  )
 )
 
Theoremmaxle2 10977 The maximum of two reals is no smaller than the second real. Lemma 3.10 of [Geuvers], p. 10. (Contributed by Jim Kingdon, 21-Dec-2021.)
 |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  B  <_  sup ( { A ,  B } ,  RR ,  <  )
 )
 
Theoremmaxleast 10978 The maximum of two reals is a least upper bound. Lemma 3.11 of [Geuvers], p. 10. (Contributed by Jim Kingdon, 22-Dec-2021.)
 |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  /\  ( A 
 <_  C  /\  B  <_  C ) )  ->  sup ( { A ,  B } ,  RR ,  <  )  <_  C )
 
Theoremmaxleastb 10979 Two ways of saying the maximum of two numbers is less than or equal to a third. (Contributed by Jim Kingdon, 31-Jan-2022.)
 |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  ( sup ( { A ,  B } ,  RR ,  <  )  <_  C  <->  ( A  <_  C 
 /\  B  <_  C ) ) )
 
Theoremmaxleastlt 10980 The maximum as a least upper bound, in terms of less than. (Contributed by Jim Kingdon, 9-Feb-2022.)
 |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  RR  /\  C  <  sup ( { A ,  B } ,  RR ,  <  ) ) ) 
 ->  ( C  <  A  \/  C  <  B ) )
 
Theoremmaxleb 10981 Equivalence of  <_ and being equal to the maximum of two reals. Lemma 3.12 of [Geuvers], p. 10. (Contributed by Jim Kingdon, 21-Dec-2021.)
 |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A  <_  B  <->  sup ( { A ,  B } ,  RR ,  <  )  =  B ) )
 
Theoremdfabsmax 10982 Absolute value of a real number in terms of maximum. Definition 3.13 of [Geuvers], p. 11. (Contributed by BJ and Jim Kingdon, 21-Dec-2021.)
 |-  ( A  e.  RR  ->  ( abs `  A )  =  sup ( { A ,  -u A } ,  RR ,  <  )
 )
 
Theoremmaxltsup 10983 Two ways of saying the maximum of two numbers is less than a third. (Contributed by Jim Kingdon, 10-Feb-2022.)
 |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  ( sup ( { A ,  B } ,  RR ,  <  )  <  C  <->  ( A  <  C 
 /\  B  <  C ) ) )
 
Theoremmax0addsup 10984 The sum of the positive and negative part functions is the absolute value function over the reals. (Contributed by Jim Kingdon, 30-Jan-2022.)
 |-  ( A  e.  RR  ->  ( sup ( { A ,  0 } ,  RR ,  <  )  +  sup ( { -u A ,  0 } ,  RR ,  <  ) )  =  ( abs `  A ) )
 
Theoremrexanre 10985* Combine two different upper real properties into one. (Contributed by Mario Carneiro, 8-May-2016.)
 |-  ( A  C_  RR  ->  ( E. j  e. 
 RR  A. k  e.  A  ( j  <_  k  ->  ( ph  /\  ps )
 ) 
 <->  ( E. j  e. 
 RR  A. k  e.  A  ( j  <_  k  ->  ph )  /\  E. j  e.  RR  A. k  e.  A  ( j  <_  k  ->  ps ) ) ) )
 
Theoremrexico 10986* Restrict the base of an upper real quantifier to an upper real set. (Contributed by Mario Carneiro, 12-May-2016.)
 |-  ( ( A  C_  RR  /\  B  e.  RR )  ->  ( E. j  e.  ( B [,) +oo ) A. k  e.  A  ( j  <_  k  ->  ph )  <->  E. j  e.  RR  A. k  e.  A  ( j  <_  k  ->  ph ) ) )
 
Theoremmaxclpr 10987 The maximum of two real numbers is one of those numbers if and only if dichotomy ( A  <_  B  \/  B  <_  A) holds. For example, this can be combined with zletric 9091 if one is dealing with integers, but real number dichotomy in general does not follow from our axioms. (Contributed by Jim Kingdon, 1-Feb-2022.)
 |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( sup ( { A ,  B } ,  RR ,  <  )  e.  { A ,  B } 
 <->  ( A  <_  B  \/  B  <_  A )
 ) )
 
Theoremrpmaxcl 10988 The maximum of two positive real numbers is a positive real number. (Contributed by Jim Kingdon, 10-Nov-2023.)
 |-  ( ( A  e.  RR+  /\  B  e.  RR+ )  ->  sup ( { A ,  B } ,  RR ,  <  )  e.  RR+ )
 
Theoremzmaxcl 10989 The maximum of two integers is an integer. (Contributed by Jim Kingdon, 27-Sep-2022.)
 |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  sup ( { A ,  B } ,  RR ,  <  )  e.  ZZ )
 
Theorem2zsupmax 10990 Two ways to express the maximum of two integers. Because order of integers is decidable, we have more flexibility than for real numbers. (Contributed by Jim Kingdon, 22-Jan-2023.)
 |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  sup ( { A ,  B } ,  RR ,  <  )  =  if ( A  <_  B ,  B ,  A )
 )
 
Theoremfimaxre2 10991* A nonempty finite set of real numbers has an upper bound. (Contributed by Jeff Madsen, 27-May-2011.) (Revised by Mario Carneiro, 13-Feb-2014.)
 |-  ( ( A  C_  RR  /\  A  e.  Fin )  ->  E. x  e.  RR  A. y  e.  A  y 
 <_  x )
 
Theoremnegfi 10992* The negation of a finite set of real numbers is finite. (Contributed by AV, 9-Aug-2020.)
 |-  ( ( A  C_  RR  /\  A  e.  Fin )  ->  { n  e. 
 RR  |  -u n  e.  A }  e.  Fin )
 
4.7.6  The minimum of two real numbers
 
Theoremmincom 10993 The minimum of two reals is commutative. (Contributed by Jim Kingdon, 8-Feb-2021.)
 |- inf
 ( { A ,  B } ,  RR ,  <  )  = inf ( { B ,  A } ,  RR ,  <  )
 
Theoremminmax 10994 Minimum expressed in terms of maximum. (Contributed by Jim Kingdon, 8-Feb-2021.)
 |-  ( ( A  e.  RR  /\  B  e.  RR )  -> inf ( { A ,  B } ,  RR ,  <  )  =  -u sup ( { -u A ,  -u B } ,  RR ,  <  ) )
 
Theoremmincl 10995 The minumum of two real numbers is a real number. (Contributed by Jim Kingdon, 25-Apr-2023.)
 |-  ( ( A  e.  RR  /\  B  e.  RR )  -> inf ( { A ,  B } ,  RR ,  <  )  e.  RR )
 
Theoremmin1inf 10996 The minimum of two numbers is less than or equal to the first. (Contributed by Jim Kingdon, 8-Feb-2021.)
 |-  ( ( A  e.  RR  /\  B  e.  RR )  -> inf ( { A ,  B } ,  RR ,  <  )  <_  A )
 
Theoremmin2inf 10997 The minimum of two numbers is less than or equal to the second. (Contributed by Jim Kingdon, 9-Feb-2021.)
 |-  ( ( A  e.  RR  /\  B  e.  RR )  -> inf ( { A ,  B } ,  RR ,  <  )  <_  B )
 
Theoremlemininf 10998 Two ways of saying a number is less than or equal to the minimum of two others. (Contributed by NM, 3-Aug-2007.)
 |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  ( A  <_ inf ( { B ,  C } ,  RR ,  <  )  <->  ( A  <_  B  /\  A  <_  C ) ) )
 
Theoremltmininf 10999 Two ways of saying a number is less than the minimum of two others. (Contributed by Jim Kingdon, 10-Feb-2022.)
 |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  ( A  < inf ( { B ,  C } ,  RR ,  <  )  <->  ( A  <  B  /\  A  <  C ) ) )
 
Theoremminabs 11000 The minimum of two real numbers in terms of absolute value. (Contributed by Jim Kingdon, 15-May-2023.)
 |-  ( ( A  e.  RR  /\  B  e.  RR )  -> inf ( { A ,  B } ,  RR ,  <  )  =  ( ( ( A  +  B )  -  ( abs `  ( A  -  B ) ) ) 
 /  2 ) )
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13239
  Copyright terms: Public domain < Previous  Next >