HomeHome Intuitionistic Logic Explorer
Theorem List (p. 110 of 142)
< Previous  Next >
Browser slow? Try the
Unicode version.

Mirrors  >  Metamath Home Page  >  ILE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Theorem List for Intuitionistic Logic Explorer - 10901-11000   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremcrimi 10901 The imaginary part of a complex number representation. Definition 10-3.1 of [Gleason] p. 132. (Contributed by NM, 10-May-1999.)
 |-  A  e.  RR   &    |-  B  e.  RR   =>    |-  ( Im `  ( A  +  ( _i  x.  B ) ) )  =  B
 
Theoremrecld 10902 The real part of a complex number is real (closure law). (Contributed by Mario Carneiro, 29-May-2016.)
 |-  ( ph  ->  A  e.  CC )   =>    |-  ( ph  ->  ( Re `  A )  e. 
 RR )
 
Theoremimcld 10903 The imaginary part of a complex number is real (closure law). (Contributed by Mario Carneiro, 29-May-2016.)
 |-  ( ph  ->  A  e.  CC )   =>    |-  ( ph  ->  ( Im `  A )  e. 
 RR )
 
Theoremcjcld 10904 Closure law for complex conjugate. (Contributed by Mario Carneiro, 29-May-2016.)
 |-  ( ph  ->  A  e.  CC )   =>    |-  ( ph  ->  ( * `  A )  e. 
 CC )
 
Theoremreplimd 10905 Construct a complex number from its real and imaginary parts. (Contributed by Mario Carneiro, 29-May-2016.)
 |-  ( ph  ->  A  e.  CC )   =>    |-  ( ph  ->  A  =  ( ( Re `  A )  +  ( _i  x.  ( Im `  A ) ) ) )
 
Theoremremimd 10906 Value of the conjugate of a complex number. The value is the real part minus  _i times the imaginary part. Definition 10-3.2 of [Gleason] p. 132. (Contributed by Mario Carneiro, 29-May-2016.)
 |-  ( ph  ->  A  e.  CC )   =>    |-  ( ph  ->  ( * `  A )  =  ( ( Re `  A )  -  ( _i  x.  ( Im `  A ) ) ) )
 
Theoremcjcjd 10907 The conjugate of the conjugate is the original complex number. Proposition 10-3.4(e) of [Gleason] p. 133. (Contributed by Mario Carneiro, 29-May-2016.)
 |-  ( ph  ->  A  e.  CC )   =>    |-  ( ph  ->  ( * `  ( * `  A ) )  =  A )
 
Theoremreim0bd 10908 A number is real iff its imaginary part is 0. (Contributed by Mario Carneiro, 29-May-2016.)
 |-  ( ph  ->  A  e.  CC )   &    |-  ( ph  ->  ( Im `  A )  =  0 )   =>    |-  ( ph  ->  A  e.  RR )
 
Theoremrerebd 10909 A real number equals its real part. Proposition 10-3.4(f) of [Gleason] p. 133. (Contributed by Mario Carneiro, 29-May-2016.)
 |-  ( ph  ->  A  e.  CC )   &    |-  ( ph  ->  ( Re `  A )  =  A )   =>    |-  ( ph  ->  A  e.  RR )
 
Theoremcjrebd 10910 A number is real iff it equals its complex conjugate. Proposition 10-3.4(f) of [Gleason] p. 133. (Contributed by Mario Carneiro, 29-May-2016.)
 |-  ( ph  ->  A  e.  CC )   &    |-  ( ph  ->  ( * `  A )  =  A )   =>    |-  ( ph  ->  A  e.  RR )
 
Theoremcjne0d 10911 A number which is nonzero has a complex conjugate which is nonzero. Also see cjap0d 10912 which is similar but for apartness. (Contributed by Mario Carneiro, 29-May-2016.)
 |-  ( ph  ->  A  e.  CC )   &    |-  ( ph  ->  A  =/=  0 )   =>    |-  ( ph  ->  ( * `  A )  =/=  0 )
 
Theoremcjap0d 10912 A number which is apart from zero has a complex conjugate which is apart from zero. (Contributed by Jim Kingdon, 11-Aug-2021.)
 |-  ( ph  ->  A  e.  CC )   &    |-  ( ph  ->  A #  0 )   =>    |-  ( ph  ->  ( * `  A ) #  0 )
 
Theoremrecjd 10913 Real part of a complex conjugate. (Contributed by Mario Carneiro, 29-May-2016.)
 |-  ( ph  ->  A  e.  CC )   =>    |-  ( ph  ->  ( Re `  ( * `  A ) )  =  ( Re `  A ) )
 
Theoremimcjd 10914 Imaginary part of a complex conjugate. (Contributed by Mario Carneiro, 29-May-2016.)
 |-  ( ph  ->  A  e.  CC )   =>    |-  ( ph  ->  ( Im `  ( * `  A ) )  =  -u ( Im `  A ) )
 
Theoremcjmulrcld 10915 A complex number times its conjugate is real. (Contributed by Mario Carneiro, 29-May-2016.)
 |-  ( ph  ->  A  e.  CC )   =>    |-  ( ph  ->  ( A  x.  ( * `  A ) )  e. 
 RR )
 
Theoremcjmulvald 10916 A complex number times its conjugate. (Contributed by Mario Carneiro, 29-May-2016.)
 |-  ( ph  ->  A  e.  CC )   =>    |-  ( ph  ->  ( A  x.  ( * `  A ) )  =  ( ( ( Re
 `  A ) ^
 2 )  +  (
 ( Im `  A ) ^ 2 ) ) )
 
Theoremcjmulge0d 10917 A complex number times its conjugate is nonnegative. (Contributed by Mario Carneiro, 29-May-2016.)
 |-  ( ph  ->  A  e.  CC )   =>    |-  ( ph  ->  0  <_  ( A  x.  ( * `  A ) ) )
 
Theoremrenegd 10918 Real part of negative. (Contributed by Mario Carneiro, 29-May-2016.)
 |-  ( ph  ->  A  e.  CC )   =>    |-  ( ph  ->  ( Re `  -u A )  =  -u ( Re `  A ) )
 
Theoremimnegd 10919 Imaginary part of negative. (Contributed by Mario Carneiro, 29-May-2016.)
 |-  ( ph  ->  A  e.  CC )   =>    |-  ( ph  ->  ( Im `  -u A )  =  -u ( Im `  A ) )
 
Theoremcjnegd 10920 Complex conjugate of negative. (Contributed by Mario Carneiro, 29-May-2016.)
 |-  ( ph  ->  A  e.  CC )   =>    |-  ( ph  ->  ( * `  -u A )  =  -u ( * `  A ) )
 
Theoremaddcjd 10921 A number plus its conjugate is twice its real part. Compare Proposition 10-3.4(h) of [Gleason] p. 133. (Contributed by Mario Carneiro, 29-May-2016.)
 |-  ( ph  ->  A  e.  CC )   =>    |-  ( ph  ->  ( A  +  ( * `  A ) )  =  ( 2  x.  ( Re `  A ) ) )
 
Theoremcjexpd 10922 Complex conjugate of positive integer exponentiation. (Contributed by Mario Carneiro, 29-May-2016.)
 |-  ( ph  ->  A  e.  CC )   &    |-  ( ph  ->  N  e.  NN0 )   =>    |-  ( ph  ->  ( * `  ( A ^ N ) )  =  ( ( * `  A ) ^ N ) )
 
Theoremreaddd 10923 Real part distributes over addition. (Contributed by Mario Carneiro, 29-May-2016.)
 |-  ( ph  ->  A  e.  CC )   &    |-  ( ph  ->  B  e.  CC )   =>    |-  ( ph  ->  ( Re `  ( A  +  B ) )  =  ( ( Re
 `  A )  +  ( Re `  B ) ) )
 
Theoremimaddd 10924 Imaginary part distributes over addition. (Contributed by Mario Carneiro, 29-May-2016.)
 |-  ( ph  ->  A  e.  CC )   &    |-  ( ph  ->  B  e.  CC )   =>    |-  ( ph  ->  ( Im `  ( A  +  B ) )  =  ( ( Im
 `  A )  +  ( Im `  B ) ) )
 
Theoremresubd 10925 Real part distributes over subtraction. (Contributed by Mario Carneiro, 29-May-2016.)
 |-  ( ph  ->  A  e.  CC )   &    |-  ( ph  ->  B  e.  CC )   =>    |-  ( ph  ->  ( Re `  ( A  -  B ) )  =  ( ( Re
 `  A )  -  ( Re `  B ) ) )
 
Theoremimsubd 10926 Imaginary part distributes over subtraction. (Contributed by Mario Carneiro, 29-May-2016.)
 |-  ( ph  ->  A  e.  CC )   &    |-  ( ph  ->  B  e.  CC )   =>    |-  ( ph  ->  ( Im `  ( A  -  B ) )  =  ( ( Im
 `  A )  -  ( Im `  B ) ) )
 
Theoremremuld 10927 Real part of a product. (Contributed by Mario Carneiro, 29-May-2016.)
 |-  ( ph  ->  A  e.  CC )   &    |-  ( ph  ->  B  e.  CC )   =>    |-  ( ph  ->  ( Re `  ( A  x.  B ) )  =  ( ( ( Re `  A )  x.  ( Re `  B ) )  -  ( ( Im `  A )  x.  ( Im `  B ) ) ) )
 
Theoremimmuld 10928 Imaginary part of a product. (Contributed by Mario Carneiro, 29-May-2016.)
 |-  ( ph  ->  A  e.  CC )   &    |-  ( ph  ->  B  e.  CC )   =>    |-  ( ph  ->  ( Im `  ( A  x.  B ) )  =  ( ( ( Re `  A )  x.  ( Im `  B ) )  +  ( ( Im `  A )  x.  ( Re `  B ) ) ) )
 
Theoremcjaddd 10929 Complex conjugate distributes over addition. Proposition 10-3.4(a) of [Gleason] p. 133. (Contributed by Mario Carneiro, 29-May-2016.)
 |-  ( ph  ->  A  e.  CC )   &    |-  ( ph  ->  B  e.  CC )   =>    |-  ( ph  ->  ( * `  ( A  +  B ) )  =  ( ( * `
  A )  +  ( * `  B ) ) )
 
Theoremcjmuld 10930 Complex conjugate distributes over multiplication. Proposition 10-3.4(c) of [Gleason] p. 133. (Contributed by Mario Carneiro, 29-May-2016.)
 |-  ( ph  ->  A  e.  CC )   &    |-  ( ph  ->  B  e.  CC )   =>    |-  ( ph  ->  ( * `  ( A  x.  B ) )  =  ( ( * `
  A )  x.  ( * `  B ) ) )
 
Theoremipcnd 10931 Standard inner product on complex numbers. (Contributed by Mario Carneiro, 29-May-2016.)
 |-  ( ph  ->  A  e.  CC )   &    |-  ( ph  ->  B  e.  CC )   =>    |-  ( ph  ->  ( Re `  ( A  x.  ( * `  B ) ) )  =  ( ( ( Re `  A )  x.  ( Re `  B ) )  +  ( ( Im `  A )  x.  ( Im `  B ) ) ) )
 
Theoremcjdivapd 10932 Complex conjugate distributes over division. (Contributed by Jim Kingdon, 15-Jun-2020.)
 |-  ( ph  ->  A  e.  CC )   &    |-  ( ph  ->  B  e.  CC )   &    |-  ( ph  ->  B #  0 )   =>    |-  ( ph  ->  ( * `  ( A  /  B ) )  =  ( ( * `  A ) 
 /  ( * `  B ) ) )
 
Theoremrered 10933 A real number equals its real part. One direction of Proposition 10-3.4(f) of [Gleason] p. 133. (Contributed by Mario Carneiro, 29-May-2016.)
 |-  ( ph  ->  A  e.  RR )   =>    |-  ( ph  ->  ( Re `  A )  =  A )
 
Theoremreim0d 10934 The imaginary part of a real number is 0. (Contributed by Mario Carneiro, 29-May-2016.)
 |-  ( ph  ->  A  e.  RR )   =>    |-  ( ph  ->  ( Im `  A )  =  0 )
 
Theoremcjred 10935 A real number equals its complex conjugate. Proposition 10-3.4(f) of [Gleason] p. 133. (Contributed by Mario Carneiro, 29-May-2016.)
 |-  ( ph  ->  A  e.  RR )   =>    |-  ( ph  ->  ( * `  A )  =  A )
 
Theoremremul2d 10936 Real part of a product. (Contributed by Mario Carneiro, 29-May-2016.)
 |-  ( ph  ->  A  e.  RR )   &    |-  ( ph  ->  B  e.  CC )   =>    |-  ( ph  ->  ( Re `  ( A  x.  B ) )  =  ( A  x.  ( Re `  B ) ) )
 
Theoremimmul2d 10937 Imaginary part of a product. (Contributed by Mario Carneiro, 29-May-2016.)
 |-  ( ph  ->  A  e.  RR )   &    |-  ( ph  ->  B  e.  CC )   =>    |-  ( ph  ->  ( Im `  ( A  x.  B ) )  =  ( A  x.  ( Im `  B ) ) )
 
Theoremredivapd 10938 Real part of a division. Related to remul2 10837. (Contributed by Jim Kingdon, 15-Jun-2020.)
 |-  ( ph  ->  A  e.  RR )   &    |-  ( ph  ->  B  e.  CC )   &    |-  ( ph  ->  A #  0 )   =>    |-  ( ph  ->  ( Re `  ( B  /  A ) )  =  ( ( Re `  B ) 
 /  A ) )
 
Theoremimdivapd 10939 Imaginary part of a division. Related to remul2 10837. (Contributed by Jim Kingdon, 15-Jun-2020.)
 |-  ( ph  ->  A  e.  RR )   &    |-  ( ph  ->  B  e.  CC )   &    |-  ( ph  ->  A #  0 )   =>    |-  ( ph  ->  ( Im `  ( B  /  A ) )  =  ( ( Im `  B ) 
 /  A ) )
 
Theoremcrred 10940 The real part of a complex number representation. Definition 10-3.1 of [Gleason] p. 132. (Contributed by Mario Carneiro, 29-May-2016.)
 |-  ( ph  ->  A  e.  RR )   &    |-  ( ph  ->  B  e.  RR )   =>    |-  ( ph  ->  ( Re `  ( A  +  ( _i  x.  B ) ) )  =  A )
 
Theoremcrimd 10941 The imaginary part of a complex number representation. Definition 10-3.1 of [Gleason] p. 132. (Contributed by Mario Carneiro, 29-May-2016.)
 |-  ( ph  ->  A  e.  RR )   &    |-  ( ph  ->  B  e.  RR )   =>    |-  ( ph  ->  ( Im `  ( A  +  ( _i  x.  B ) ) )  =  B )
 
Theoremcnreim 10942 Complex apartness in terms of real and imaginary parts. See also apreim 8522 which is similar but with different notation. (Contributed by Jim Kingdon, 16-Dec-2023.)
 |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( A #  B  <->  ( ( Re `  A ) #  ( Re `  B )  \/  ( Im `  A ) #  ( Im `  B ) ) ) )
 
4.7.3  Sequence convergence
 
Theoremcaucvgrelemrec 10943* Two ways to express a reciprocal. (Contributed by Jim Kingdon, 20-Jul-2021.)
 |-  ( ( A  e.  RR  /\  A #  0 ) 
 ->  ( iota_ r  e.  RR  ( A  x.  r
 )  =  1 )  =  ( 1  /  A ) )
 
Theoremcaucvgrelemcau 10944* Lemma for caucvgre 10945. Converting the Cauchy condition. (Contributed by Jim Kingdon, 20-Jul-2021.)
 |-  ( ph  ->  F : NN --> RR )   &    |-  ( ph  ->  A. n  e.  NN  A. k  e.  ( ZZ>= `  n ) ( ( F `  n )  <  ( ( F `
  k )  +  ( 1  /  n ) )  /\  ( F `
  k )  < 
 ( ( F `  n )  +  (
 1  /  n )
 ) ) )   =>    |-  ( ph  ->  A. n  e.  NN  A. k  e.  NN  ( n  <RR  k  ->  (
 ( F `  n )  <RR  ( ( F `
  k )  +  ( iota_ r  e.  RR  ( n  x.  r
 )  =  1 ) )  /\  ( F `
  k )  <RR  ( ( F `  n )  +  ( iota_ r  e. 
 RR  ( n  x.  r )  =  1
 ) ) ) ) )
 
Theoremcaucvgre 10945* Convergence of real sequences.

A Cauchy sequence (as defined here, which has a rate of convergence built in) of real numbers converges to a real number. Specifically on rate of convergence, all terms after the nth term must be within  1  /  n of the nth term.

(Contributed by Jim Kingdon, 19-Jul-2021.)

 |-  ( ph  ->  F : NN --> RR )   &    |-  ( ph  ->  A. n  e.  NN  A. k  e.  ( ZZ>= `  n ) ( ( F `  n )  <  ( ( F `
  k )  +  ( 1  /  n ) )  /\  ( F `
  k )  < 
 ( ( F `  n )  +  (
 1  /  n )
 ) ) )   =>    |-  ( ph  ->  E. y  e.  RR  A. x  e.  RR+  E. j  e.  NN  A. i  e.  ( ZZ>= `  j )
 ( ( F `  i )  <  ( y  +  x )  /\  y  <  ( ( F `
  i )  +  x ) ) )
 
Theoremcvg1nlemcxze 10946 Lemma for cvg1n 10950. Rearranging an expression related to the rate of convergence. (Contributed by Jim Kingdon, 6-Aug-2021.)
 |-  ( ph  ->  C  e.  RR+ )   &    |-  ( ph  ->  X  e.  RR+ )   &    |-  ( ph  ->  Z  e.  NN )   &    |-  ( ph  ->  E  e.  NN )   &    |-  ( ph  ->  A  e.  NN )   &    |-  ( ph  ->  ( ( ( ( C  x.  2 )  /  X )  /  Z )  +  A )  <  E )   =>    |-  ( ph  ->  ( C  /  ( E  x.  Z ) )  < 
 ( X  /  2
 ) )
 
Theoremcvg1nlemf 10947* Lemma for cvg1n 10950. The modified sequence  G is a sequence. (Contributed by Jim Kingdon, 1-Aug-2021.)
 |-  ( ph  ->  F : NN --> RR )   &    |-  ( ph  ->  C  e.  RR+ )   &    |-  ( ph  ->  A. n  e.  NN  A. k  e.  ( ZZ>= `  n )
 ( ( F `  n )  <  ( ( F `  k )  +  ( C  /  n ) )  /\  ( F `  k )  <  ( ( F `
  n )  +  ( C  /  n ) ) ) )   &    |-  G  =  ( j  e.  NN  |->  ( F `  ( j  x.  Z ) ) )   &    |-  ( ph  ->  Z  e.  NN )   &    |-  ( ph  ->  C  <  Z )   =>    |-  ( ph  ->  G : NN --> RR )
 
Theoremcvg1nlemcau 10948* Lemma for cvg1n 10950. By selecting spaced out terms for the modified sequence  G, the terms are within  1  /  n (without the constant  C). (Contributed by Jim Kingdon, 1-Aug-2021.)
 |-  ( ph  ->  F : NN --> RR )   &    |-  ( ph  ->  C  e.  RR+ )   &    |-  ( ph  ->  A. n  e.  NN  A. k  e.  ( ZZ>= `  n )
 ( ( F `  n )  <  ( ( F `  k )  +  ( C  /  n ) )  /\  ( F `  k )  <  ( ( F `
  n )  +  ( C  /  n ) ) ) )   &    |-  G  =  ( j  e.  NN  |->  ( F `  ( j  x.  Z ) ) )   &    |-  ( ph  ->  Z  e.  NN )   &    |-  ( ph  ->  C  <  Z )   =>    |-  ( ph  ->  A. n  e.  NN  A. k  e.  ( ZZ>= `  n )
 ( ( G `  n )  <  ( ( G `  k )  +  ( 1  /  n ) )  /\  ( G `  k )  <  ( ( G `
  n )  +  ( 1  /  n ) ) ) )
 
Theoremcvg1nlemres 10949* Lemma for cvg1n 10950. The original sequence  F has a limit (turns out it is the same as the limit of the modified sequence  G). (Contributed by Jim Kingdon, 1-Aug-2021.)
 |-  ( ph  ->  F : NN --> RR )   &    |-  ( ph  ->  C  e.  RR+ )   &    |-  ( ph  ->  A. n  e.  NN  A. k  e.  ( ZZ>= `  n )
 ( ( F `  n )  <  ( ( F `  k )  +  ( C  /  n ) )  /\  ( F `  k )  <  ( ( F `
  n )  +  ( C  /  n ) ) ) )   &    |-  G  =  ( j  e.  NN  |->  ( F `  ( j  x.  Z ) ) )   &    |-  ( ph  ->  Z  e.  NN )   &    |-  ( ph  ->  C  <  Z )   =>    |-  ( ph  ->  E. y  e.  RR  A. x  e.  RR+  E. j  e.  NN  A. i  e.  ( ZZ>= `  j ) ( ( F `  i )  <  ( y  +  x )  /\  y  < 
 ( ( F `  i )  +  x ) ) )
 
Theoremcvg1n 10950* Convergence of real sequences.

This is a version of caucvgre 10945 with a constant multiplier  C on the rate of convergence. That is, all terms after the nth term must be within  C  /  n of the nth term.

(Contributed by Jim Kingdon, 1-Aug-2021.)

 |-  ( ph  ->  F : NN --> RR )   &    |-  ( ph  ->  C  e.  RR+ )   &    |-  ( ph  ->  A. n  e.  NN  A. k  e.  ( ZZ>= `  n )
 ( ( F `  n )  <  ( ( F `  k )  +  ( C  /  n ) )  /\  ( F `  k )  <  ( ( F `
  n )  +  ( C  /  n ) ) ) )   =>    |-  ( ph  ->  E. y  e.  RR  A. x  e.  RR+  E. j  e.  NN  A. i  e.  ( ZZ>= `  j ) ( ( F `  i )  <  ( y  +  x )  /\  y  < 
 ( ( F `  i )  +  x ) ) )
 
Theoremuzin2 10951 The upper integers are closed under intersection. (Contributed by Mario Carneiro, 24-Dec-2013.)
 |-  ( ( A  e.  ran  ZZ>= 
 /\  B  e.  ran  ZZ>= )  ->  ( A  i^i  B )  e.  ran  ZZ>= )
 
Theoremrexanuz 10952* Combine two different upper integer properties into one. (Contributed by Mario Carneiro, 25-Dec-2013.)
 |-  ( E. j  e. 
 ZZ  A. k  e.  ( ZZ>=
 `  j ) (
 ph  /\  ps )  <->  ( E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) ph  /\  E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) ps ) )
 
Theoremrexfiuz 10953* Combine finitely many different upper integer properties into one. (Contributed by Mario Carneiro, 6-Jun-2014.)
 |-  ( A  e.  Fin  ->  ( E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) A. n  e.  A  ph  <->  A. n  e.  A  E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) ph )
 )
 
Theoremrexuz3 10954* Restrict the base of the upper integers set to another upper integers set. (Contributed by Mario Carneiro, 26-Dec-2013.)
 |-  Z  =  ( ZZ>= `  M )   =>    |-  ( M  e.  ZZ  ->  ( E. j  e.  Z  A. k  e.  ( ZZ>= `  j ) ph 
 <-> 
 E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) ph )
 )
 
Theoremrexanuz2 10955* Combine two different upper integer properties into one. (Contributed by Mario Carneiro, 26-Dec-2013.)
 |-  Z  =  ( ZZ>= `  M )   =>    |-  ( E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
 ( ph  /\  ps )  <->  ( E. j  e.  Z  A. k  e.  ( ZZ>= `  j ) ph  /\  E. j  e.  Z  A. k  e.  ( ZZ>= `  j ) ps ) )
 
Theoremr19.29uz 10956* A version of 19.29 1613 for upper integer quantifiers. (Contributed by Mario Carneiro, 10-Feb-2014.)
 |-  Z  =  ( ZZ>= `  M )   =>    |-  ( ( A. k  e.  Z  ph  /\  E. j  e.  Z  A. k  e.  ( ZZ>= `  j ) ps )  ->  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
 ( ph  /\  ps )
 )
 
Theoremr19.2uz 10957* A version of r19.2m 3501 for upper integer quantifiers. (Contributed by Mario Carneiro, 15-Feb-2014.)
 |-  Z  =  ( ZZ>= `  M )   =>    |-  ( E. j  e.  Z  A. k  e.  ( ZZ>= `  j ) ph  ->  E. k  e.  Z  ph )
 
Theoremrecvguniqlem 10958 Lemma for recvguniq 10959. Some of the rearrangements of the expressions. (Contributed by Jim Kingdon, 8-Aug-2021.)
 |-  ( ph  ->  F : NN --> RR )   &    |-  ( ph  ->  A  e.  RR )   &    |-  ( ph  ->  B  e.  RR )   &    |-  ( ph  ->  K  e.  NN )   &    |-  ( ph  ->  A  <  (
 ( F `  K )  +  ( ( A  -  B )  / 
 2 ) ) )   &    |-  ( ph  ->  ( F `  K )  <  ( B  +  ( ( A  -  B )  / 
 2 ) ) )   =>    |-  ( ph  -> F.  )
 
Theoremrecvguniq 10959* Limits are unique. (Contributed by Jim Kingdon, 7-Aug-2021.)
 |-  ( ph  ->  F : NN --> RR )   &    |-  ( ph  ->  L  e.  RR )   &    |-  ( ph  ->  A. x  e.  RR+  E. j  e. 
 NN  A. k  e.  ( ZZ>=
 `  j ) ( ( F `  k
 )  <  ( L  +  x )  /\  L  <  ( ( F `  k )  +  x ) ) )   &    |-  ( ph  ->  M  e.  RR )   &    |-  ( ph  ->  A. x  e.  RR+  E. j  e. 
 NN  A. k  e.  ( ZZ>=
 `  j ) ( ( F `  k
 )  <  ( M  +  x )  /\  M  <  ( ( F `  k )  +  x ) ) )   =>    |-  ( ph  ->  L  =  M )
 
4.7.4  Square root; absolute value
 
Syntaxcsqrt 10960 Extend class notation to include square root of a complex number.
 class  sqr
 
Syntaxcabs 10961 Extend class notation to include a function for the absolute value (modulus) of a complex number.
 class  abs
 
Definitiondf-rsqrt 10962* Define a function whose value is the square root of a nonnegative real number.

Defining the square root for complex numbers has one difficult part: choosing between the two roots. The usual way to define a principal square root for all complex numbers relies on excluded middle or something similar. But in the case of a nonnegative real number, we don't have the complications presented for general complex numbers, and we can choose the nonnegative root.

(Contributed by Jim Kingdon, 23-Aug-2020.)

 |- 
 sqr  =  ( x  e.  RR  |->  ( iota_ y  e. 
 RR  ( ( y ^ 2 )  =  x  /\  0  <_  y ) ) )
 
Definitiondf-abs 10963 Define the function for the absolute value (modulus) of a complex number. (Contributed by NM, 27-Jul-1999.)
 |- 
 abs  =  ( x  e.  CC  |->  ( sqr `  ( x  x.  ( * `  x ) ) ) )
 
Theoremsqrtrval 10964* Value of square root function. (Contributed by Jim Kingdon, 23-Aug-2020.)
 |-  ( A  e.  RR  ->  ( sqr `  A )  =  ( iota_ x  e. 
 RR  ( ( x ^ 2 )  =  A  /\  0  <_  x ) ) )
 
Theoremabsval 10965 The absolute value (modulus) of a complex number. Proposition 10-3.7(a) of [Gleason] p. 133. (Contributed by NM, 27-Jul-1999.) (Revised by Mario Carneiro, 7-Nov-2013.)
 |-  ( A  e.  CC  ->  ( abs `  A )  =  ( sqr `  ( A  x.  ( * `  A ) ) ) )
 
Theoremrennim 10966 A real number does not lie on the negative imaginary axis. (Contributed by Mario Carneiro, 8-Jul-2013.)
 |-  ( A  e.  RR  ->  ( _i  x.  A )  e/  RR+ )
 
Theoremsqrt0rlem 10967 Lemma for sqrt0 10968. (Contributed by Jim Kingdon, 26-Aug-2020.)
 |-  ( ( A  e.  RR  /\  ( ( A ^ 2 )  =  0  /\  0  <_  A ) )  <->  A  =  0
 )
 
Theoremsqrt0 10968 Square root of zero. (Contributed by Mario Carneiro, 9-Jul-2013.)
 |-  ( sqr `  0
 )  =  0
 
Theoremresqrexlem1arp 10969 Lemma for resqrex 10990.  1  +  A is a positive real (expressed in a way that will help apply seqf 10417 and similar theorems). (Contributed by Jim Kingdon, 28-Jul-2021.) (Revised by Jim Kingdon, 16-Oct-2022.)
 |-  ( ph  ->  A  e.  RR )   &    |-  ( ph  ->  0 
 <_  A )   =>    |-  ( ( ph  /\  N  e.  NN )  ->  (
 ( NN  X.  {
 ( 1  +  A ) } ) `  N )  e.  RR+ )
 
Theoremresqrexlemp1rp 10970* Lemma for resqrex 10990. Applying the recursion rule yields a positive real (expressed in a way that will help apply seqf 10417 and similar theorems). (Contributed by Jim Kingdon, 28-Jul-2021.) (Revised by Jim Kingdon, 16-Oct-2022.)
 |-  ( ph  ->  A  e.  RR )   &    |-  ( ph  ->  0 
 <_  A )   =>    |-  ( ( ph  /\  ( B  e.  RR+  /\  C  e.  RR+ ) )  ->  ( B ( y  e.  RR+ ,  z  e.  RR+  |->  ( ( y  +  ( A  /  y
 ) )  /  2
 ) ) C )  e.  RR+ )
 
Theoremresqrexlemf 10971* Lemma for resqrex 10990. The sequence is a function. (Contributed by Mario Carneiro and Jim Kingdon, 27-Jul-2021.) (Revised by Jim Kingdon, 16-Oct-2022.)
 |-  F  =  seq 1
 ( ( y  e.  RR+ ,  z  e.  RR+  |->  ( ( y  +  ( A  /  y
 ) )  /  2
 ) ) ,  ( NN  X.  { ( 1  +  A ) }
 ) )   &    |-  ( ph  ->  A  e.  RR )   &    |-  ( ph  ->  0  <_  A )   =>    |-  ( ph  ->  F : NN --> RR+ )
 
Theoremresqrexlemf1 10972* Lemma for resqrex 10990. Initial value. Although this sequence converges to the square root with any positive initial value, this choice makes various steps in the proof of convergence easier. (Contributed by Mario Carneiro and Jim Kingdon, 27-Jul-2021.) (Revised by Jim Kingdon, 16-Oct-2022.)
 |-  F  =  seq 1
 ( ( y  e.  RR+ ,  z  e.  RR+  |->  ( ( y  +  ( A  /  y
 ) )  /  2
 ) ) ,  ( NN  X.  { ( 1  +  A ) }
 ) )   &    |-  ( ph  ->  A  e.  RR )   &    |-  ( ph  ->  0  <_  A )   =>    |-  ( ph  ->  ( F `  1 )  =  ( 1  +  A ) )
 
Theoremresqrexlemfp1 10973* Lemma for resqrex 10990. Recursion rule. This sequence is the ancient method for computing square roots, often known as the babylonian method, although known to many ancient cultures. (Contributed by Mario Carneiro and Jim Kingdon, 27-Jul-2021.)
 |-  F  =  seq 1
 ( ( y  e.  RR+ ,  z  e.  RR+  |->  ( ( y  +  ( A  /  y
 ) )  /  2
 ) ) ,  ( NN  X.  { ( 1  +  A ) }
 ) )   &    |-  ( ph  ->  A  e.  RR )   &    |-  ( ph  ->  0  <_  A )   =>    |-  ( ( ph  /\  N  e.  NN )  ->  ( F `  ( N  +  1 ) )  =  ( ( ( F `
  N )  +  ( A  /  ( F `  N ) ) )  /  2 ) )
 
Theoremresqrexlemover 10974* Lemma for resqrex 10990. Each element of the sequence is an overestimate. (Contributed by Mario Carneiro and Jim Kingdon, 27-Jul-2021.)
 |-  F  =  seq 1
 ( ( y  e.  RR+ ,  z  e.  RR+  |->  ( ( y  +  ( A  /  y
 ) )  /  2
 ) ) ,  ( NN  X.  { ( 1  +  A ) }
 ) )   &    |-  ( ph  ->  A  e.  RR )   &    |-  ( ph  ->  0  <_  A )   =>    |-  ( ( ph  /\  N  e.  NN )  ->  A  <  ( ( F `  N ) ^ 2
 ) )
 
Theoremresqrexlemdec 10975* Lemma for resqrex 10990. The sequence is decreasing. (Contributed by Mario Carneiro and Jim Kingdon, 29-Jul-2021.)
 |-  F  =  seq 1
 ( ( y  e.  RR+ ,  z  e.  RR+  |->  ( ( y  +  ( A  /  y
 ) )  /  2
 ) ) ,  ( NN  X.  { ( 1  +  A ) }
 ) )   &    |-  ( ph  ->  A  e.  RR )   &    |-  ( ph  ->  0  <_  A )   =>    |-  ( ( ph  /\  N  e.  NN )  ->  ( F `  ( N  +  1 ) )  < 
 ( F `  N ) )
 
Theoremresqrexlemdecn 10976* Lemma for resqrex 10990. The sequence is decreasing. (Contributed by Jim Kingdon, 31-Jul-2021.)
 |-  F  =  seq 1
 ( ( y  e.  RR+ ,  z  e.  RR+  |->  ( ( y  +  ( A  /  y
 ) )  /  2
 ) ) ,  ( NN  X.  { ( 1  +  A ) }
 ) )   &    |-  ( ph  ->  A  e.  RR )   &    |-  ( ph  ->  0  <_  A )   &    |-  ( ph  ->  N  e.  NN )   &    |-  ( ph  ->  M  e.  NN )   &    |-  ( ph  ->  N  <  M )   =>    |-  ( ph  ->  ( F `  M )  < 
 ( F `  N ) )
 
Theoremresqrexlemlo 10977* Lemma for resqrex 10990. A (variable) lower bound for each term of the sequence. (Contributed by Mario Carneiro and Jim Kingdon, 29-Jul-2021.)
 |-  F  =  seq 1
 ( ( y  e.  RR+ ,  z  e.  RR+  |->  ( ( y  +  ( A  /  y
 ) )  /  2
 ) ) ,  ( NN  X.  { ( 1  +  A ) }
 ) )   &    |-  ( ph  ->  A  e.  RR )   &    |-  ( ph  ->  0  <_  A )   =>    |-  ( ( ph  /\  N  e.  NN )  ->  (
 1  /  ( 2 ^ N ) )  < 
 ( F `  N ) )
 
Theoremresqrexlemcalc1 10978* Lemma for resqrex 10990. Some of the calculations involved in showing that the sequence converges. (Contributed by Mario Carneiro and Jim Kingdon, 29-Jul-2021.)
 |-  F  =  seq 1
 ( ( y  e.  RR+ ,  z  e.  RR+  |->  ( ( y  +  ( A  /  y
 ) )  /  2
 ) ) ,  ( NN  X.  { ( 1  +  A ) }
 ) )   &    |-  ( ph  ->  A  e.  RR )   &    |-  ( ph  ->  0  <_  A )   =>    |-  ( ( ph  /\  N  e.  NN )  ->  (
 ( ( F `  ( N  +  1
 ) ) ^ 2
 )  -  A )  =  ( ( ( ( ( F `  N ) ^ 2
 )  -  A ) ^ 2 )  /  ( 4  x.  (
 ( F `  N ) ^ 2 ) ) ) )
 
Theoremresqrexlemcalc2 10979* Lemma for resqrex 10990. Some of the calculations involved in showing that the sequence converges. (Contributed by Mario Carneiro and Jim Kingdon, 29-Jul-2021.)
 |-  F  =  seq 1
 ( ( y  e.  RR+ ,  z  e.  RR+  |->  ( ( y  +  ( A  /  y
 ) )  /  2
 ) ) ,  ( NN  X.  { ( 1  +  A ) }
 ) )   &    |-  ( ph  ->  A  e.  RR )   &    |-  ( ph  ->  0  <_  A )   =>    |-  ( ( ph  /\  N  e.  NN )  ->  (
 ( ( F `  ( N  +  1
 ) ) ^ 2
 )  -  A ) 
 <_  ( ( ( ( F `  N ) ^ 2 )  -  A )  /  4
 ) )
 
Theoremresqrexlemcalc3 10980* Lemma for resqrex 10990. Some of the calculations involved in showing that the sequence converges. (Contributed by Mario Carneiro and Jim Kingdon, 29-Jul-2021.)
 |-  F  =  seq 1
 ( ( y  e.  RR+ ,  z  e.  RR+  |->  ( ( y  +  ( A  /  y
 ) )  /  2
 ) ) ,  ( NN  X.  { ( 1  +  A ) }
 ) )   &    |-  ( ph  ->  A  e.  RR )   &    |-  ( ph  ->  0  <_  A )   =>    |-  ( ( ph  /\  N  e.  NN )  ->  (
 ( ( F `  N ) ^ 2
 )  -  A ) 
 <_  ( ( ( F `
  1 ) ^
 2 )  /  (
 4 ^ ( N  -  1 ) ) ) )
 
Theoremresqrexlemnmsq 10981* Lemma for resqrex 10990. The difference between the squares of two terms of the sequence. (Contributed by Mario Carneiro and Jim Kingdon, 30-Jul-2021.)
 |-  F  =  seq 1
 ( ( y  e.  RR+ ,  z  e.  RR+  |->  ( ( y  +  ( A  /  y
 ) )  /  2
 ) ) ,  ( NN  X.  { ( 1  +  A ) }
 ) )   &    |-  ( ph  ->  A  e.  RR )   &    |-  ( ph  ->  0  <_  A )   &    |-  ( ph  ->  N  e.  NN )   &    |-  ( ph  ->  M  e.  NN )   &    |-  ( ph  ->  N  <_  M )   =>    |-  ( ph  ->  (
 ( ( F `  N ) ^ 2
 )  -  ( ( F `  M ) ^ 2 ) )  <  ( ( ( F `  1 ) ^ 2 )  /  ( 4 ^ ( N  -  1 ) ) ) )
 
Theoremresqrexlemnm 10982* Lemma for resqrex 10990. The difference between two terms of the sequence. (Contributed by Mario Carneiro and Jim Kingdon, 31-Jul-2021.)
 |-  F  =  seq 1
 ( ( y  e.  RR+ ,  z  e.  RR+  |->  ( ( y  +  ( A  /  y
 ) )  /  2
 ) ) ,  ( NN  X.  { ( 1  +  A ) }
 ) )   &    |-  ( ph  ->  A  e.  RR )   &    |-  ( ph  ->  0  <_  A )   &    |-  ( ph  ->  N  e.  NN )   &    |-  ( ph  ->  M  e.  NN )   &    |-  ( ph  ->  N  <_  M )   =>    |-  ( ph  ->  (
 ( F `  N )  -  ( F `  M ) )  < 
 ( ( ( ( F `  1 ) ^ 2 )  x.  2 )  /  (
 2 ^ ( N  -  1 ) ) ) )
 
Theoremresqrexlemcvg 10983* Lemma for resqrex 10990. The sequence has a limit. (Contributed by Jim Kingdon, 6-Aug-2021.)
 |-  F  =  seq 1
 ( ( y  e.  RR+ ,  z  e.  RR+  |->  ( ( y  +  ( A  /  y
 ) )  /  2
 ) ) ,  ( NN  X.  { ( 1  +  A ) }
 ) )   &    |-  ( ph  ->  A  e.  RR )   &    |-  ( ph  ->  0  <_  A )   =>    |-  ( ph  ->  E. r  e.  RR  A. x  e.  RR+  E. j  e.  NN  A. i  e.  ( ZZ>= `  j ) ( ( F `  i )  <  ( r  +  x )  /\  r  < 
 ( ( F `  i )  +  x ) ) )
 
Theoremresqrexlemgt0 10984* Lemma for resqrex 10990. A limit is nonnegative. (Contributed by Jim Kingdon, 7-Aug-2021.)
 |-  F  =  seq 1
 ( ( y  e.  RR+ ,  z  e.  RR+  |->  ( ( y  +  ( A  /  y
 ) )  /  2
 ) ) ,  ( NN  X.  { ( 1  +  A ) }
 ) )   &    |-  ( ph  ->  A  e.  RR )   &    |-  ( ph  ->  0  <_  A )   &    |-  ( ph  ->  L  e.  RR )   &    |-  ( ph  ->  A. e  e.  RR+  E. j  e.  NN  A. i  e.  ( ZZ>= `  j )
 ( ( F `  i )  <  ( L  +  e )  /\  L  <  ( ( F `
  i )  +  e ) ) )   =>    |-  ( ph  ->  0  <_  L )
 
Theoremresqrexlemoverl 10985* Lemma for resqrex 10990. Every term in the sequence is an overestimate compared with the limit 
L. Although this theorem is stated in terms of a particular sequence the proof could be adapted for any decreasing convergent sequence. (Contributed by Jim Kingdon, 9-Aug-2021.)
 |-  F  =  seq 1
 ( ( y  e.  RR+ ,  z  e.  RR+  |->  ( ( y  +  ( A  /  y
 ) )  /  2
 ) ) ,  ( NN  X.  { ( 1  +  A ) }
 ) )   &    |-  ( ph  ->  A  e.  RR )   &    |-  ( ph  ->  0  <_  A )   &    |-  ( ph  ->  L  e.  RR )   &    |-  ( ph  ->  A. e  e.  RR+  E. j  e.  NN  A. i  e.  ( ZZ>= `  j )
 ( ( F `  i )  <  ( L  +  e )  /\  L  <  ( ( F `
  i )  +  e ) ) )   &    |-  ( ph  ->  K  e.  NN )   =>    |-  ( ph  ->  L  <_  ( F `  K ) )
 
Theoremresqrexlemglsq 10986* Lemma for resqrex 10990. The sequence formed by squaring each term of  F converges to  ( L ^
2 ). (Contributed by Mario Carneiro and Jim Kingdon, 8-Aug-2021.)
 |-  F  =  seq 1
 ( ( y  e.  RR+ ,  z  e.  RR+  |->  ( ( y  +  ( A  /  y
 ) )  /  2
 ) ) ,  ( NN  X.  { ( 1  +  A ) }
 ) )   &    |-  ( ph  ->  A  e.  RR )   &    |-  ( ph  ->  0  <_  A )   &    |-  ( ph  ->  L  e.  RR )   &    |-  ( ph  ->  A. e  e.  RR+  E. j  e.  NN  A. i  e.  ( ZZ>= `  j )
 ( ( F `  i )  <  ( L  +  e )  /\  L  <  ( ( F `
  i )  +  e ) ) )   &    |-  G  =  ( x  e.  NN  |->  ( ( F `
  x ) ^
 2 ) )   =>    |-  ( ph  ->  A. e  e.  RR+  E. j  e.  NN  A. k  e.  ( ZZ>= `  j )
 ( ( G `  k )  <  ( ( L ^ 2 )  +  e )  /\  ( L ^ 2 )  <  ( ( G `
  k )  +  e ) ) )
 
Theoremresqrexlemga 10987* Lemma for resqrex 10990. The sequence formed by squaring each term of  F converges to  A. (Contributed by Mario Carneiro and Jim Kingdon, 8-Aug-2021.)
 |-  F  =  seq 1
 ( ( y  e.  RR+ ,  z  e.  RR+  |->  ( ( y  +  ( A  /  y
 ) )  /  2
 ) ) ,  ( NN  X.  { ( 1  +  A ) }
 ) )   &    |-  ( ph  ->  A  e.  RR )   &    |-  ( ph  ->  0  <_  A )   &    |-  ( ph  ->  L  e.  RR )   &    |-  ( ph  ->  A. e  e.  RR+  E. j  e.  NN  A. i  e.  ( ZZ>= `  j )
 ( ( F `  i )  <  ( L  +  e )  /\  L  <  ( ( F `
  i )  +  e ) ) )   &    |-  G  =  ( x  e.  NN  |->  ( ( F `
  x ) ^
 2 ) )   =>    |-  ( ph  ->  A. e  e.  RR+  E. j  e.  NN  A. k  e.  ( ZZ>= `  j )
 ( ( G `  k )  <  ( A  +  e )  /\  A  <  ( ( G `
  k )  +  e ) ) )
 
Theoremresqrexlemsqa 10988* Lemma for resqrex 10990. The square of a limit is  A. (Contributed by Jim Kingdon, 7-Aug-2021.)
 |-  F  =  seq 1
 ( ( y  e.  RR+ ,  z  e.  RR+  |->  ( ( y  +  ( A  /  y
 ) )  /  2
 ) ) ,  ( NN  X.  { ( 1  +  A ) }
 ) )   &    |-  ( ph  ->  A  e.  RR )   &    |-  ( ph  ->  0  <_  A )   &    |-  ( ph  ->  L  e.  RR )   &    |-  ( ph  ->  A. e  e.  RR+  E. j  e.  NN  A. i  e.  ( ZZ>= `  j )
 ( ( F `  i )  <  ( L  +  e )  /\  L  <  ( ( F `
  i )  +  e ) ) )   =>    |-  ( ph  ->  ( L ^ 2 )  =  A )
 
Theoremresqrexlemex 10989* Lemma for resqrex 10990. Existence of square root given a sequence which converges to the square root. (Contributed by Mario Carneiro and Jim Kingdon, 27-Jul-2021.)
 |-  F  =  seq 1
 ( ( y  e.  RR+ ,  z  e.  RR+  |->  ( ( y  +  ( A  /  y
 ) )  /  2
 ) ) ,  ( NN  X.  { ( 1  +  A ) }
 ) )   &    |-  ( ph  ->  A  e.  RR )   &    |-  ( ph  ->  0  <_  A )   =>    |-  ( ph  ->  E. x  e.  RR  ( 0  <_  x  /\  ( x ^
 2 )  =  A ) )
 
Theoremresqrex 10990* Existence of a square root for positive reals. (Contributed by Mario Carneiro, 9-Jul-2013.)
 |-  ( ( A  e.  RR  /\  0  <_  A )  ->  E. x  e.  RR  ( 0  <_  x  /\  ( x ^ 2
 )  =  A ) )
 
Theoremrsqrmo 10991* Uniqueness for the square root function. (Contributed by Jim Kingdon, 10-Aug-2021.)
 |-  ( ( A  e.  RR  /\  0  <_  A )  ->  E* x  e.  RR  ( ( x ^
 2 )  =  A  /\  0  <_  x ) )
 
Theoremrersqreu 10992* Existence and uniqueness for the real square root function. (Contributed by Jim Kingdon, 10-Aug-2021.)
 |-  ( ( A  e.  RR  /\  0  <_  A )  ->  E! x  e. 
 RR  ( ( x ^ 2 )  =  A  /\  0  <_  x ) )
 
Theoremresqrtcl 10993 Closure of the square root function. (Contributed by Mario Carneiro, 9-Jul-2013.)
 |-  ( ( A  e.  RR  /\  0  <_  A )  ->  ( sqr `  A )  e.  RR )
 
Theoremrersqrtthlem 10994 Lemma for resqrtth 10995. (Contributed by Jim Kingdon, 10-Aug-2021.)
 |-  ( ( A  e.  RR  /\  0  <_  A )  ->  ( ( ( sqr `  A ) ^ 2 )  =  A  /\  0  <_  ( sqr `  A )
 ) )
 
Theoremresqrtth 10995 Square root theorem over the reals. Theorem I.35 of [Apostol] p. 29. (Contributed by Mario Carneiro, 9-Jul-2013.)
 |-  ( ( A  e.  RR  /\  0  <_  A )  ->  ( ( sqr `  A ) ^ 2
 )  =  A )
 
Theoremremsqsqrt 10996 Square of square root. (Contributed by Mario Carneiro, 10-Jul-2013.)
 |-  ( ( A  e.  RR  /\  0  <_  A )  ->  ( ( sqr `  A )  x.  ( sqr `  A ) )  =  A )
 
Theoremsqrtge0 10997 The square root function is nonnegative for nonnegative input. (Contributed by NM, 26-May-1999.) (Revised by Mario Carneiro, 9-Jul-2013.)
 |-  ( ( A  e.  RR  /\  0  <_  A )  ->  0  <_  ( sqr `  A ) )
 
Theoremsqrtgt0 10998 The square root function is positive for positive input. (Contributed by Mario Carneiro, 10-Jul-2013.) (Revised by Mario Carneiro, 6-Sep-2013.)
 |-  ( ( A  e.  RR  /\  0  <  A )  ->  0  <  ( sqr `  A ) )
 
Theoremsqrtmul 10999 Square root distributes over multiplication. (Contributed by NM, 30-Jul-1999.) (Revised by Mario Carneiro, 29-May-2016.)
 |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B ) )  ->  ( sqr `  ( A  x.  B ) )  =  ( ( sqr `  A )  x.  ( sqr `  B ) ) )
 
Theoremsqrtle 11000 Square root is monotonic. (Contributed by NM, 17-Mar-2005.) (Proof shortened by Mario Carneiro, 29-May-2016.)
 |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B ) )  ->  ( A  <_  B  <->  ( sqr `  A )  <_  ( sqr `  B ) ) )
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14113
  Copyright terms: Public domain < Previous  Next >