HomeHome Intuitionistic Logic Explorer
Theorem List (p. 110 of 164)
< Previous  Next >
Browser slow? Try the
Unicode version.

Mirrors  >  Metamath Home Page  >  ILE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Theorem List for Intuitionistic Logic Explorer - 10901-11000   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremexpge1d 10901 A real greater than or equal to 1 raised to a nonnegative integer is greater than or equal to 1. (Contributed by Mario Carneiro, 28-May-2016.)
 |-  ( ph  ->  A  e.  RR )   &    |-  ( ph  ->  N  e.  NN0 )   &    |-  ( ph  ->  1 
 <_  A )   =>    |-  ( ph  ->  1  <_  ( A ^ N ) )
 
Theoremsqoddm1div8 10902 A squared odd number minus 1 divided by 8 is the odd number multiplied with its successor divided by 2. (Contributed by AV, 19-Jul-2021.)
 |-  ( ( N  e.  ZZ  /\  M  =  ( ( 2  x.  N )  +  1 )
 )  ->  ( (
 ( M ^ 2
 )  -  1 ) 
 /  8 )  =  ( ( N  x.  ( N  +  1
 ) )  /  2
 ) )
 
Theoremnnsqcld 10903 The naturals are closed under squaring. (Contributed by Mario Carneiro, 28-May-2016.)
 |-  ( ph  ->  A  e.  NN )   =>    |-  ( ph  ->  ( A ^ 2 )  e. 
 NN )
 
Theoremnnexpcld 10904 Closure of exponentiation of nonnegative integers. (Contributed by Mario Carneiro, 28-May-2016.)
 |-  ( ph  ->  A  e.  NN )   &    |-  ( ph  ->  N  e.  NN0 )   =>    |-  ( ph  ->  ( A ^ N )  e. 
 NN )
 
Theoremnn0expcld 10905 Closure of exponentiation of nonnegative integers. (Contributed by Mario Carneiro, 28-May-2016.)
 |-  ( ph  ->  A  e.  NN0 )   &    |-  ( ph  ->  N  e.  NN0 )   =>    |-  ( ph  ->  ( A ^ N )  e. 
 NN0 )
 
Theoremrpexpcld 10906 Closure law for exponentiation of positive reals. (Contributed by Mario Carneiro, 28-May-2016.)
 |-  ( ph  ->  A  e.  RR+ )   &    |-  ( ph  ->  N  e.  ZZ )   =>    |-  ( ph  ->  ( A ^ N )  e.  RR+ )
 
Theoremreexpclzapd 10907 Closure of exponentiation of reals. (Contributed by Jim Kingdon, 13-Jun-2020.)
 |-  ( ph  ->  A  e.  RR )   &    |-  ( ph  ->  A #  0 )   &    |-  ( ph  ->  N  e.  ZZ )   =>    |-  ( ph  ->  ( A ^ N )  e.  RR )
 
Theoremresqcld 10908 Closure of square in reals. (Contributed by Mario Carneiro, 28-May-2016.)
 |-  ( ph  ->  A  e.  RR )   =>    |-  ( ph  ->  ( A ^ 2 )  e. 
 RR )
 
Theoremsqge0d 10909 A square of a real is nonnegative. (Contributed by Mario Carneiro, 28-May-2016.)
 |-  ( ph  ->  A  e.  RR )   =>    |-  ( ph  ->  0  <_  ( A ^ 2
 ) )
 
Theoremsqgt0apd 10910 The square of a real apart from zero is positive. (Contributed by Jim Kingdon, 13-Jun-2020.)
 |-  ( ph  ->  A  e.  RR )   &    |-  ( ph  ->  A #  0 )   =>    |-  ( ph  ->  0  <  ( A ^ 2
 ) )
 
Theoremleexp2ad 10911 Ordering relationship for exponentiation. (Contributed by Mario Carneiro, 28-May-2016.)
 |-  ( ph  ->  A  e.  RR )   &    |-  ( ph  ->  1 
 <_  A )   &    |-  ( ph  ->  N  e.  ( ZZ>= `  M ) )   =>    |-  ( ph  ->  ( A ^ M )  <_  ( A ^ N ) )
 
Theoremleexp2rd 10912 Ordering relationship for exponentiation. (Contributed by Mario Carneiro, 28-May-2016.)
 |-  ( ph  ->  A  e.  RR )   &    |-  ( ph  ->  M  e.  NN0 )   &    |-  ( ph  ->  N  e.  ( ZZ>= `  M ) )   &    |-  ( ph  ->  0 
 <_  A )   &    |-  ( ph  ->  A 
 <_  1 )   =>    |-  ( ph  ->  ( A ^ N )  <_  ( A ^ M ) )
 
Theoremlt2sqd 10913 The square function on nonnegative reals is strictly monotonic. (Contributed by Mario Carneiro, 28-May-2016.)
 |-  ( ph  ->  A  e.  RR )   &    |-  ( ph  ->  B  e.  RR )   &    |-  ( ph  ->  0  <_  A )   &    |-  ( ph  ->  0  <_  B )   =>    |-  ( ph  ->  ( A  <  B  <->  ( A ^
 2 )  <  ( B ^ 2 ) ) )
 
Theoremle2sqd 10914 The square function on nonnegative reals is monotonic. (Contributed by Mario Carneiro, 28-May-2016.)
 |-  ( ph  ->  A  e.  RR )   &    |-  ( ph  ->  B  e.  RR )   &    |-  ( ph  ->  0  <_  A )   &    |-  ( ph  ->  0  <_  B )   =>    |-  ( ph  ->  ( A  <_  B  <->  ( A ^
 2 )  <_  ( B ^ 2 ) ) )
 
Theoremsq11d 10915 The square function is one-to-one for nonnegative reals. (Contributed by Mario Carneiro, 28-May-2016.)
 |-  ( ph  ->  A  e.  RR )   &    |-  ( ph  ->  B  e.  RR )   &    |-  ( ph  ->  0  <_  A )   &    |-  ( ph  ->  0  <_  B )   &    |-  ( ph  ->  ( A ^ 2 )  =  ( B ^
 2 ) )   =>    |-  ( ph  ->  A  =  B )
 
Theoremsq11ap 10916 Analogue to sq11 10821 but for apartness. (Contributed by Jim Kingdon, 12-Aug-2021.)
 |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B ) )  ->  ( ( A ^
 2 ) #  ( B ^ 2 )  <->  A #  B )
 )
 
Theoremzzlesq 10917 An integer is less than or equal to its square. (Contributed by BJ, 6-Feb-2025.)
 |-  ( N  e.  ZZ  ->  N  <_  ( N ^ 2 ) )
 
Theoremnn0ltexp2 10918 Special case of ltexp2 15600 which we use here because we haven't yet defined df-rpcxp 15518 which is used in the current proof of ltexp2 15600. (Contributed by Jim Kingdon, 7-Oct-2024.)
 |-  ( ( ( A  e.  RR  /\  M  e.  NN0  /\  N  e.  NN0 )  /\  1  <  A )  ->  ( M  <  N  <->  ( A ^ M )  <  ( A ^ N ) ) )
 
Theoremnn0leexp2 10919 Ordering law for exponentiation. (Contributed by Jim Kingdon, 9-Oct-2024.)
 |-  ( ( ( A  e.  RR  /\  M  e.  NN0  /\  N  e.  NN0 )  /\  1  <  A )  ->  ( M 
 <_  N  <->  ( A ^ M )  <_  ( A ^ N ) ) )
 
Theoremmulsubdivbinom2ap 10920 The square of a binomial with factor minus a number divided by a number apart from zero. (Contributed by AV, 19-Jul-2021.)
 |-  ( ( ( A  e.  CC  /\  B  e.  CC  /\  D  e.  CC )  /\  ( C  e.  CC  /\  C #  0 ) )  ->  ( ( ( ( ( C  x.  A )  +  B ) ^ 2 )  -  D )  /  C )  =  ( ( ( C  x.  ( A ^ 2 ) )  +  ( 2  x.  ( A  x.  B ) ) )  +  ( ( ( B ^ 2 )  -  D )  /  C ) ) )
 
Theoremsq10 10921 The square of 10 is 100. (Contributed by AV, 14-Jun-2021.) (Revised by AV, 1-Aug-2021.)
 |-  (; 1 0 ^ 2
 )  = ;; 1 0 0
 
Theoremsq10e99m1 10922 The square of 10 is 99 plus 1. (Contributed by AV, 14-Jun-2021.) (Revised by AV, 1-Aug-2021.)
 |-  (; 1 0 ^ 2
 )  =  (; 9 9  +  1 )
 
Theorem3dec 10923 A "decimal constructor" which is used to build up "decimal integers" or "numeric terms" in base 10 with 3 "digits". (Contributed by AV, 14-Jun-2021.) (Revised by AV, 1-Aug-2021.)
 |-  A  e.  NN0   &    |-  B  e.  NN0   =>    |- ;; A B C  =  ( ( ( (; 1
 0 ^ 2 )  x.  A )  +  (; 1 0  x.  B ) )  +  C )
 
Theoremexpcanlem 10924 Lemma for expcan 10925. Proving the order in one direction. (Contributed by Jim Kingdon, 29-Jan-2022.)
 |-  ( ph  ->  A  e.  RR )   &    |-  ( ph  ->  M  e.  ZZ )   &    |-  ( ph  ->  N  e.  ZZ )   &    |-  ( ph  ->  1  <  A )   =>    |-  ( ph  ->  (
 ( A ^ M )  <_  ( A ^ N )  ->  M  <_  N ) )
 
Theoremexpcan 10925 Cancellation law for exponentiation. (Contributed by NM, 2-Aug-2006.) (Revised by Mario Carneiro, 4-Jun-2014.)
 |-  ( ( ( A  e.  RR  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  1  <  A )  ->  (
 ( A ^ M )  =  ( A ^ N )  <->  M  =  N ) )
 
Theoremexpcand 10926 Ordering relationship for exponentiation. (Contributed by Mario Carneiro, 28-May-2016.)
 |-  ( ph  ->  A  e.  RR )   &    |-  ( ph  ->  M  e.  ZZ )   &    |-  ( ph  ->  N  e.  ZZ )   &    |-  ( ph  ->  1  <  A )   &    |-  ( ph  ->  ( A ^ M )  =  ( A ^ N ) )   =>    |-  ( ph  ->  M  =  N )
 
Theoremapexp1 10927 Exponentiation and apartness. (Contributed by Jim Kingdon, 9-Jul-2024.)
 |-  ( ( A  e.  CC  /\  B  e.  CC  /\  N  e.  NN )  ->  ( ( A ^ N ) #  ( B ^ N )  ->  A #  B ) )
 
4.6.7  Ordered pair theorem for nonnegative integers
 
Theoremnn0le2msqd 10928 The square function on nonnegative integers is monotonic. (Contributed by Jim Kingdon, 31-Oct-2021.)
 |-  ( ph  ->  A  e.  NN0 )   &    |-  ( ph  ->  B  e.  NN0 )   =>    |-  ( ph  ->  ( A  <_  B  <->  ( A  x.  A )  <_  ( B  x.  B ) ) )
 
Theoremnn0opthlem1d 10929 A rather pretty lemma for nn0opth2 10933. (Contributed by Jim Kingdon, 31-Oct-2021.)
 |-  ( ph  ->  A  e.  NN0 )   &    |-  ( ph  ->  C  e.  NN0 )   =>    |-  ( ph  ->  ( A  <  C  <->  ( ( A  x.  A )  +  ( 2  x.  A ) )  <  ( C  x.  C ) ) )
 
Theoremnn0opthlem2d 10930 Lemma for nn0opth2 10933. (Contributed by Jim Kingdon, 31-Oct-2021.)
 |-  ( ph  ->  A  e.  NN0 )   &    |-  ( ph  ->  B  e.  NN0 )   &    |-  ( ph  ->  C  e.  NN0 )   &    |-  ( ph  ->  D  e.  NN0 )   =>    |-  ( ph  ->  (
 ( A  +  B )  <  C  ->  (
 ( C  x.  C )  +  D )  =/=  ( ( ( A  +  B )  x.  ( A  +  B ) )  +  B ) ) )
 
Theoremnn0opthd 10931 An ordered pair theorem for nonnegative integers. Theorem 17.3 of [Quine] p. 124. We can represent an ordered pair of nonnegative integers  A and  B by  (
( ( A  +  B )  x.  ( A  +  B )
)  +  B ). If two such ordered pairs are equal, their first elements are equal and their second elements are equal. Contrast this ordered pair representation with the standard one df-op 3675 that works for any set. (Contributed by Jim Kingdon, 31-Oct-2021.)
 |-  ( ph  ->  A  e.  NN0 )   &    |-  ( ph  ->  B  e.  NN0 )   &    |-  ( ph  ->  C  e.  NN0 )   &    |-  ( ph  ->  D  e.  NN0 )   =>    |-  ( ph  ->  (
 ( ( ( A  +  B )  x.  ( A  +  B ) )  +  B )  =  ( (
 ( C  +  D )  x.  ( C  +  D ) )  +  D )  <->  ( A  =  C  /\  B  =  D ) ) )
 
Theoremnn0opth2d 10932 An ordered pair theorem for nonnegative integers. Theorem 17.3 of [Quine] p. 124. See comments for nn0opthd 10931. (Contributed by Jim Kingdon, 31-Oct-2021.)
 |-  ( ph  ->  A  e.  NN0 )   &    |-  ( ph  ->  B  e.  NN0 )   &    |-  ( ph  ->  C  e.  NN0 )   &    |-  ( ph  ->  D  e.  NN0 )   =>    |-  ( ph  ->  (
 ( ( ( A  +  B ) ^
 2 )  +  B )  =  ( (
 ( C  +  D ) ^ 2 )  +  D )  <->  ( A  =  C  /\  B  =  D ) ) )
 
Theoremnn0opth2 10933 An ordered pair theorem for nonnegative integers. Theorem 17.3 of [Quine] p. 124. See nn0opthd 10931. (Contributed by NM, 22-Jul-2004.)
 |-  ( ( ( A  e.  NN0  /\  B  e.  NN0 )  /\  ( C  e.  NN0  /\  D  e.  NN0 ) )  ->  (
 ( ( ( A  +  B ) ^
 2 )  +  B )  =  ( (
 ( C  +  D ) ^ 2 )  +  D )  <->  ( A  =  C  /\  B  =  D ) ) )
 
4.6.8  Factorial function
 
Syntaxcfa 10934 Extend class notation to include the factorial of nonnegative integers.
 class  !
 
Definitiondf-fac 10935 Define the factorial function on nonnegative integers. For example,  ( ! `  5 )  =  1 2 0 because  1  x.  2  x.  3  x.  4  x.  5  =  1 2 0 (ex-fac 16022). In the literature, the factorial function is written as a postscript exclamation point. (Contributed by NM, 2-Dec-2004.)
 |-  !  =  ( { <. 0 ,  1 >. }  u.  seq 1 (  x.  ,  _I  )
 )
 
Theoremfacnn 10936 Value of the factorial function for positive integers. (Contributed by NM, 2-Dec-2004.) (Revised by Mario Carneiro, 13-Jul-2013.)
 |-  ( N  e.  NN  ->  ( ! `  N )  =  (  seq 1 (  x.  ,  _I  ) `  N ) )
 
Theoremfac0 10937 The factorial of 0. (Contributed by NM, 2-Dec-2004.) (Revised by Mario Carneiro, 13-Jul-2013.)
 |-  ( ! `  0
 )  =  1
 
Theoremfac1 10938 The factorial of 1. (Contributed by NM, 2-Dec-2004.) (Revised by Mario Carneiro, 13-Jul-2013.)
 |-  ( ! `  1
 )  =  1
 
Theoremfacp1 10939 The factorial of a successor. (Contributed by NM, 2-Dec-2004.) (Revised by Mario Carneiro, 13-Jul-2013.)
 |-  ( N  e.  NN0  ->  ( ! `  ( N  +  1 ) )  =  ( ( ! `
  N )  x.  ( N  +  1 ) ) )
 
Theoremfac2 10940 The factorial of 2. (Contributed by NM, 17-Mar-2005.)
 |-  ( ! `  2
 )  =  2
 
Theoremfac3 10941 The factorial of 3. (Contributed by NM, 17-Mar-2005.)
 |-  ( ! `  3
 )  =  6
 
Theoremfac4 10942 The factorial of 4. (Contributed by Mario Carneiro, 18-Jun-2015.)
 |-  ( ! `  4
 )  = ; 2 4
 
Theoremfacnn2 10943 Value of the factorial function expressed recursively. (Contributed by NM, 2-Dec-2004.)
 |-  ( N  e.  NN  ->  ( ! `  N )  =  ( ( ! `  ( N  -  1 ) )  x.  N ) )
 
Theoremfaccl 10944 Closure of the factorial function. (Contributed by NM, 2-Dec-2004.)
 |-  ( N  e.  NN0  ->  ( ! `  N )  e.  NN )
 
Theoremfaccld 10945 Closure of the factorial function, deduction version of faccl 10944. (Contributed by Glauco Siliprandi, 5-Apr-2020.)
 |-  ( ph  ->  N  e.  NN0 )   =>    |-  ( ph  ->  ( ! `  N )  e. 
 NN )
 
Theoremfacne0 10946 The factorial function is nonzero. (Contributed by NM, 26-Apr-2005.)
 |-  ( N  e.  NN0  ->  ( ! `  N )  =/=  0 )
 
Theoremfacdiv 10947 A positive integer divides the factorial of an equal or larger number. (Contributed by NM, 2-May-2005.)
 |-  ( ( M  e.  NN0  /\  N  e.  NN  /\  N  <_  M )  ->  ( ( ! `  M )  /  N )  e.  NN )
 
Theoremfacndiv 10948 No positive integer (greater than one) divides the factorial plus one of an equal or larger number. (Contributed by NM, 3-May-2005.)
 |-  ( ( ( M  e.  NN0  /\  N  e.  NN )  /\  ( 1  <  N  /\  N  <_  M ) )  ->  -.  ( ( ( ! `
  M )  +  1 )  /  N )  e.  ZZ )
 
Theoremfacwordi 10949 Ordering property of factorial. (Contributed by NM, 9-Dec-2005.)
 |-  ( ( M  e.  NN0  /\  N  e.  NN0  /\  M  <_  N )  ->  ( ! `  M )  <_  ( ! `  N ) )
 
Theoremfaclbnd 10950 A lower bound for the factorial function. (Contributed by NM, 17-Dec-2005.)
 |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  ->  ( M ^ ( N  +  1 )
 )  <_  ( ( M ^ M )  x.  ( ! `  N ) ) )
 
Theoremfaclbnd2 10951 A lower bound for the factorial function. (Contributed by NM, 17-Dec-2005.)
 |-  ( N  e.  NN0  ->  ( ( 2 ^ N )  /  2
 )  <_  ( ! `  N ) )
 
Theoremfaclbnd3 10952 A lower bound for the factorial function. (Contributed by NM, 19-Dec-2005.)
 |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  ->  ( M ^ N )  <_  ( ( M ^ M )  x.  ( ! `  N ) ) )
 
Theoremfaclbnd6 10953 Geometric lower bound for the factorial function, where N is usually held constant. (Contributed by Paul Chapman, 28-Dec-2007.)
 |-  ( ( N  e.  NN0  /\  M  e.  NN0 )  ->  ( ( ! `  N )  x.  (
 ( N  +  1 ) ^ M ) )  <_  ( ! `  ( N  +  M ) ) )
 
Theoremfacubnd 10954 An upper bound for the factorial function. (Contributed by Mario Carneiro, 15-Apr-2016.)
 |-  ( N  e.  NN0  ->  ( ! `  N ) 
 <_  ( N ^ N ) )
 
Theoremfacavg 10955 The product of two factorials is greater than or equal to the factorial of (the floor of) their average. (Contributed by NM, 9-Dec-2005.)
 |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  ->  ( ! `  ( |_ `  ( ( M  +  N )  / 
 2 ) ) ) 
 <_  ( ( ! `  M )  x.  ( ! `  N ) ) )
 
4.6.9  The binomial coefficient operation
 
Syntaxcbc 10956 Extend class notation to include the binomial coefficient operation (combinatorial choose operation).
 class  _C
 
Definitiondf-bc 10957* Define the binomial coefficient operation. For example,  ( 5  _C  3 )  =  1 0 (ex-bc 16023).

In the literature, this function is often written as a column vector of the two arguments, or with the arguments as subscripts before and after the letter "C".  ( N  _C  K
) is read " N choose  K." Definition of binomial coefficient in [Gleason] p. 295. As suggested by Gleason, we define it to be 0 when  0  <_  k  <_  n does not hold. (Contributed by NM, 10-Jul-2005.)

 |- 
 _C  =  ( n  e.  NN0 ,  k  e. 
 ZZ  |->  if ( k  e.  ( 0 ... n ) ,  ( ( ! `  n )  /  ( ( ! `  ( n  -  k
 ) )  x.  ( ! `  k ) ) ) ,  0 ) )
 
Theorembcval 10958 Value of the binomial coefficient, 
N choose  K. Definition of binomial coefficient in [Gleason] p. 295. As suggested by Gleason, we define it to be 0 when  0  <_  K  <_  N does not hold. See bcval2 10959 for the value in the standard domain. (Contributed by NM, 10-Jul-2005.) (Revised by Mario Carneiro, 7-Nov-2013.)
 |-  ( ( N  e.  NN0  /\  K  e.  ZZ )  ->  ( N  _C  K )  =  if ( K  e.  ( 0 ... N ) ,  (
 ( ! `  N )  /  ( ( ! `
  ( N  -  K ) )  x.  ( ! `  K ) ) ) ,  0 ) )
 
Theorembcval2 10959 Value of the binomial coefficient, 
N choose  K, in its standard domain. (Contributed by NM, 9-Jun-2005.) (Revised by Mario Carneiro, 7-Nov-2013.)
 |-  ( K  e.  (
 0 ... N )  ->  ( N  _C  K )  =  ( ( ! `
  N )  /  ( ( ! `  ( N  -  K ) )  x.  ( ! `  K ) ) ) )
 
Theorembcval3 10960 Value of the binomial coefficient, 
N choose  K, outside of its standard domain. Remark in [Gleason] p. 295. (Contributed by NM, 14-Jul-2005.) (Revised by Mario Carneiro, 8-Nov-2013.)
 |-  ( ( N  e.  NN0  /\  K  e.  ZZ  /\  -.  K  e.  ( 0
 ... N ) ) 
 ->  ( N  _C  K )  =  0 )
 
Theorembcval4 10961 Value of the binomial coefficient, 
N choose  K, outside of its standard domain. Remark in [Gleason] p. 295. (Contributed by NM, 14-Jul-2005.) (Revised by Mario Carneiro, 7-Nov-2013.)
 |-  ( ( N  e.  NN0  /\  K  e.  ZZ  /\  ( K  <  0  \/  N  <  K ) )  ->  ( N  _C  K )  =  0 )
 
Theorembcrpcl 10962 Closure of the binomial coefficient in the positive reals. (This is mostly a lemma before we have bccl2 10977.) (Contributed by Mario Carneiro, 10-Mar-2014.)
 |-  ( K  e.  (
 0 ... N )  ->  ( N  _C  K )  e.  RR+ )
 
Theorembccmpl 10963 "Complementing" its second argument doesn't change a binary coefficient. (Contributed by NM, 21-Jun-2005.) (Revised by Mario Carneiro, 5-Mar-2014.)
 |-  ( ( N  e.  NN0  /\  K  e.  ZZ )  ->  ( N  _C  K )  =  ( N  _C  ( N  -  K ) ) )
 
Theorembcn0 10964  N choose 0 is 1. Remark in [Gleason] p. 296. (Contributed by NM, 17-Jun-2005.) (Revised by Mario Carneiro, 8-Nov-2013.)
 |-  ( N  e.  NN0  ->  ( N  _C  0
 )  =  1 )
 
Theorembc0k 10965 The binomial coefficient " 0 choose  K " is 0 for a positive integer K. Note that  ( 0  _C  0 )  =  1 (see bcn0 10964). (Contributed by Alexander van der Vekens, 1-Jan-2018.)
 |-  ( K  e.  NN  ->  ( 0  _C  K )  =  0 )
 
Theorembcnn 10966  N choose  N is 1. Remark in [Gleason] p. 296. (Contributed by NM, 17-Jun-2005.) (Revised by Mario Carneiro, 8-Nov-2013.)
 |-  ( N  e.  NN0  ->  ( N  _C  N )  =  1 )
 
Theorembcn1 10967 Binomial coefficient:  N choose  1. (Contributed by NM, 21-Jun-2005.) (Revised by Mario Carneiro, 8-Nov-2013.)
 |-  ( N  e.  NN0  ->  ( N  _C  1
 )  =  N )
 
Theorembcnp1n 10968 Binomial coefficient:  N  +  1 choose  N. (Contributed by NM, 20-Jun-2005.) (Revised by Mario Carneiro, 8-Nov-2013.)
 |-  ( N  e.  NN0  ->  ( ( N  +  1 )  _C  N )  =  ( N  +  1 ) )
 
Theorembcm1k 10969 The proportion of one binomial coefficient to another with  K decreased by 1. (Contributed by Mario Carneiro, 10-Mar-2014.)
 |-  ( K  e.  (
 1 ... N )  ->  ( N  _C  K )  =  ( ( N  _C  ( K  -  1 ) )  x.  ( ( N  -  ( K  -  1
 ) )  /  K ) ) )
 
Theorembcp1n 10970 The proportion of one binomial coefficient to another with  N increased by 1. (Contributed by Mario Carneiro, 10-Mar-2014.)
 |-  ( K  e.  (
 0 ... N )  ->  ( ( N  +  1 )  _C  K )  =  ( ( N  _C  K )  x.  ( ( N  +  1 )  /  (
 ( N  +  1 )  -  K ) ) ) )
 
Theorembcp1nk 10971 The proportion of one binomial coefficient to another with  N and  K increased by 1. (Contributed by Mario Carneiro, 16-Jan-2015.)
 |-  ( K  e.  (
 0 ... N )  ->  ( ( N  +  1 )  _C  ( K  +  1 )
 )  =  ( ( N  _C  K )  x.  ( ( N  +  1 )  /  ( K  +  1
 ) ) ) )
 
Theorembcval5 10972 Write out the top and bottom parts of the binomial coefficient  ( N  _C  K )  =  ( N  x.  ( N  -  1 )  x. 
...  x.  ( ( N  -  K )  +  1 ) )  /  K ! explicitly. In this form, it is valid even for  N  <  K, although it is no longer valid for nonpositive  K. (Contributed by Mario Carneiro, 22-May-2014.) (Revised by Jim Kingdon, 23-Apr-2023.)
 |-  ( ( N  e.  NN0  /\  K  e.  NN )  ->  ( N  _C  K )  =  ( (  seq ( ( N  -  K )  +  1
 ) (  x.  ,  _I  ) `  N ) 
 /  ( ! `  K ) ) )
 
Theorembcn2 10973 Binomial coefficient:  N choose  2. (Contributed by Mario Carneiro, 22-May-2014.)
 |-  ( N  e.  NN0  ->  ( N  _C  2
 )  =  ( ( N  x.  ( N  -  1 ) ) 
 /  2 ) )
 
Theorembcp1m1 10974 Compute the binomial coefficient of 
( N  +  1 ) over  ( N  - 
1 ) (Contributed by Scott Fenton, 11-May-2014.) (Revised by Mario Carneiro, 22-May-2014.)
 |-  ( N  e.  NN0  ->  ( ( N  +  1 )  _C  ( N  -  1 ) )  =  ( ( ( N  +  1 )  x.  N )  / 
 2 ) )
 
Theorembcpasc 10975 Pascal's rule for the binomial coefficient, generalized to all integers  K. Equation 2 of [Gleason] p. 295. (Contributed by NM, 13-Jul-2005.) (Revised by Mario Carneiro, 10-Mar-2014.)
 |-  ( ( N  e.  NN0  /\  K  e.  ZZ )  ->  ( ( N  _C  K )  +  ( N  _C  ( K  -  1 ) ) )  =  ( ( N  +  1 )  _C  K ) )
 
Theorembccl 10976 A binomial coefficient, in its extended domain, is a nonnegative integer. (Contributed by NM, 10-Jul-2005.) (Revised by Mario Carneiro, 9-Nov-2013.)
 |-  ( ( N  e.  NN0  /\  K  e.  ZZ )  ->  ( N  _C  K )  e.  NN0 )
 
Theorembccl2 10977 A binomial coefficient, in its standard domain, is a positive integer. (Contributed by NM, 3-Jan-2006.) (Revised by Mario Carneiro, 10-Mar-2014.)
 |-  ( K  e.  (
 0 ... N )  ->  ( N  _C  K )  e.  NN )
 
Theorembcn2m1 10978 Compute the binomial coefficient " N choose 2 " from " ( N  -  1 ) choose 2 ": (N-1) + ( (N-1) 2 ) = ( N 2 ). (Contributed by Alexander van der Vekens, 7-Jan-2018.)
 |-  ( N  e.  NN  ->  ( ( N  -  1 )  +  (
 ( N  -  1
 )  _C  2 )
 )  =  ( N  _C  2 ) )
 
Theorembcn2p1 10979 Compute the binomial coefficient " ( N  +  1
) choose 2 " from " N choose 2 ": N + ( N 2 ) = ( (N+1) 2 ). (Contributed by Alexander van der Vekens, 8-Jan-2018.)
 |-  ( N  e.  NN0  ->  ( N  +  ( N  _C  2 ) )  =  ( ( N  +  1 )  _C  2 ) )
 
Theorempermnn 10980 The number of permutations of  N  -  R objects from a collection of  N objects is a positive integer. (Contributed by Jason Orendorff, 24-Jan-2007.)
 |-  ( R  e.  (
 0 ... N )  ->  ( ( ! `  N )  /  ( ! `  R ) )  e.  NN )
 
Theorembcnm1 10981 The binomial coefficent of  ( N  -  1 ) is  N. (Contributed by Scott Fenton, 16-May-2014.)
 |-  ( N  e.  NN0  ->  ( N  _C  ( N  -  1 ) )  =  N )
 
Theorem4bc3eq4 10982 The value of four choose three. (Contributed by Scott Fenton, 11-Jun-2016.)
 |-  ( 4  _C  3
 )  =  4
 
Theorem4bc2eq6 10983 The value of four choose two. (Contributed by Scott Fenton, 9-Jan-2017.)
 |-  ( 4  _C  2
 )  =  6
 
4.6.10  The ` # ` (set size) function
 
Syntaxchash 10984 Extend the definition of a class to include the set size function.
 class
 
Definitiondf-ihash 10985* Define the set size function ♯, which gives the cardinality of a finite set as a member of 
NN0, and assigns all infinite sets the value +oo. For example,  ( `  {
0 ,  1 ,  2 } )  =  3.

Since we don't know that an arbitrary set is either finite or infinite (by inffiexmid 7056), the behavior beyond finite sets is not as useful as it might appear. For example, we wouldn't expect to be able to define this function in a meaningful way on  ~P 1o, which cannot be shown to be finite (per pw1fin 7060).

Note that we use the sharp sign (♯) for this function and we use the different character octothorpe (#) for the apartness relation (see df-ap 8717). We adopt the former notation from Corollary 8.2.4 of [AczelRathjen], p. 80 (although that work only defines it for finite sets).

This definition (in terms of  U. and 
~<_) is not taken directly from the literature, but for finite sets should be equivalent to the conventional definition that the size of a finite set is the unique natural number which is equinumerous to the given set. (Contributed by Jim Kingdon, 19-Feb-2022.)

 |- =  ( (frec ( ( x  e.  ZZ  |->  ( x  +  1 ) ) ,  0 )  u.  { <. om , +oo >. } )  o.  ( x  e.  _V  |->  U.
 { y  e.  ( om  u.  { om }
 )  |  y  ~<_  x } ) )
 
Theoremhashinfuni 10986* The ordinal size of an infinite set is  om. (Contributed by Jim Kingdon, 20-Feb-2022.)
 |-  ( om  ~<_  A  ->  U.
 { y  e.  ( om  u.  { om }
 )  |  y  ~<_  A }  =  om )
 
Theoremhashinfom 10987 The value of the ♯ function on an infinite set. (Contributed by Jim Kingdon, 20-Feb-2022.)
 |-  ( om  ~<_  A  ->  ( `  A )  = +oo )
 
Theoremhashennnuni 10988* The ordinal size of a set equinumerous to an element of  om is that element of  om. (Contributed by Jim Kingdon, 20-Feb-2022.)
 |-  ( ( N  e.  om 
 /\  N  ~~  A )  ->  U. { y  e.  ( om  u.  { om } )  |  y  ~<_  A }  =  N )
 
Theoremhashennn 10989* The size of a set equinumerous to an element of  om. (Contributed by Jim Kingdon, 21-Feb-2022.)
 |-  ( ( N  e.  om 
 /\  N  ~~  A )  ->  ( `  A )  =  (frec ( ( x  e.  ZZ  |->  ( x  +  1 ) ) ,  0 ) `  N ) )
 
Theoremhashcl 10990 Closure of the ♯ function. (Contributed by Paul Chapman, 26-Oct-2012.) (Revised by Mario Carneiro, 13-Jul-2014.)
 |-  ( A  e.  Fin  ->  ( `  A )  e. 
 NN0 )
 
Theoremhashfiv01gt1 10991 The size of a finite set is either 0 or 1 or greater than 1. (Contributed by Jim Kingdon, 21-Feb-2022.)
 |-  ( M  e.  Fin  ->  ( ( `  M )  =  0  \/  ( `  M )  =  1  \/  1  <  ( `  M ) ) )
 
Theoremhashfz1 10992 The set  ( 1 ... N ) has  N elements. (Contributed by Paul Chapman, 22-Jun-2011.) (Revised by Mario Carneiro, 15-Sep-2013.)
 |-  ( N  e.  NN0  ->  ( `  ( 1 ...
 N ) )  =  N )
 
Theoremhashen 10993 Two finite sets have the same number of elements iff they are equinumerous. (Contributed by Paul Chapman, 22-Jun-2011.) (Revised by Mario Carneiro, 15-Sep-2013.)
 |-  ( ( A  e.  Fin  /\  B  e.  Fin )  ->  ( ( `  A )  =  ( `  B ) 
 <->  A  ~~  B ) )
 
Theoremhasheqf1o 10994* The size of two finite sets is equal if and only if there is a bijection mapping one of the sets onto the other. (Contributed by Alexander van der Vekens, 17-Dec-2017.)
 |-  ( ( A  e.  Fin  /\  B  e.  Fin )  ->  ( ( `  A )  =  ( `  B ) 
 <-> 
 E. f  f : A -1-1-onto-> B ) )
 
Theoremfiinfnf1o 10995* There is no bijection between a finite set and an infinite set. By infnfi 7045 the theorem would also hold if "infinite" were expressed as  om  ~<_  B. (Contributed by Alexander van der Vekens, 25-Dec-2017.)
 |-  ( ( A  e.  Fin  /\  -.  B  e.  Fin )  ->  -.  E. f  f : A -1-1-onto-> B )
 
Theoremfihasheqf1oi 10996 The size of two finite sets is equal if there is a bijection mapping one of the sets onto the other. (Contributed by Jim Kingdon, 21-Feb-2022.)
 |-  ( ( A  e.  Fin  /\  F : A -1-1-onto-> B )  ->  ( `  A )  =  ( `  B ) )
 
Theoremfihashf1rn 10997 The size of a finite set which is a one-to-one function is equal to the size of the function's range. (Contributed by Jim Kingdon, 21-Feb-2022.)
 |-  ( ( A  e.  Fin  /\  F : A -1-1-> B )  ->  ( `  F )  =  ( `  ran  F ) )
 
Theoremfihasheqf1od 10998 The size of two finite sets is equal if there is a bijection mapping one of the sets onto the other. (Contributed by Jim Kingdon, 21-Feb-2022.)
 |-  ( ph  ->  A  e.  Fin )   &    |-  ( ph  ->  F : A -1-1-onto-> B )   =>    |-  ( ph  ->  ( `  A )  =  ( `  B ) )
 
Theoremfz1eqb 10999 Two possibly-empty 1-based finite sets of sequential integers are equal iff their endpoints are equal. (Contributed by Paul Chapman, 22-Jun-2011.) (Proof shortened by Mario Carneiro, 29-Mar-2014.)
 |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  ->  ( ( 1 ...
 M )  =  ( 1 ... N )  <->  M  =  N )
 )
 
Theoremfiltinf 11000 The size of an infinite set is greater than the size of a finite set. (Contributed by Jim Kingdon, 21-Feb-2022.)
 |-  ( ( A  e.  Fin  /\  om  ~<_  B )  ->  ( `  A )  < 
 ( `  B ) )
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15600 157 15601-15700 158 15701-15800 159 15801-15900 160 15901-16000 161 16001-16100 162 16101-16200 163 16201-16300 164 16301-16383
  Copyright terms: Public domain < Previous  Next >