ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cvg1nlemf GIF version

Theorem cvg1nlemf 10876
Description: Lemma for cvg1n 10879. The modified sequence 𝐺 is a sequence. (Contributed by Jim Kingdon, 1-Aug-2021.)
Hypotheses
Ref Expression
cvg1n.f (𝜑𝐹:ℕ⟶ℝ)
cvg1n.c (𝜑𝐶 ∈ ℝ+)
cvg1n.cau (𝜑 → ∀𝑛 ∈ ℕ ∀𝑘 ∈ (ℤ𝑛)((𝐹𝑛) < ((𝐹𝑘) + (𝐶 / 𝑛)) ∧ (𝐹𝑘) < ((𝐹𝑛) + (𝐶 / 𝑛))))
cvg1nlem.g 𝐺 = (𝑗 ∈ ℕ ↦ (𝐹‘(𝑗 · 𝑍)))
cvg1nlem.z (𝜑𝑍 ∈ ℕ)
cvg1nlem.start (𝜑𝐶 < 𝑍)
Assertion
Ref Expression
cvg1nlemf (𝜑𝐺:ℕ⟶ℝ)
Distinct variable group:   𝜑,𝑗
Allowed substitution hints:   𝜑(𝑘,𝑛)   𝐶(𝑗,𝑘,𝑛)   𝐹(𝑗,𝑘,𝑛)   𝐺(𝑗,𝑘,𝑛)   𝑍(𝑗,𝑘,𝑛)

Proof of Theorem cvg1nlemf
StepHypRef Expression
1 cvg1n.f . . . 4 (𝜑𝐹:ℕ⟶ℝ)
21adantr 274 . . 3 ((𝜑𝑗 ∈ ℕ) → 𝐹:ℕ⟶ℝ)
3 simpr 109 . . . 4 ((𝜑𝑗 ∈ ℕ) → 𝑗 ∈ ℕ)
4 cvg1nlem.z . . . . 5 (𝜑𝑍 ∈ ℕ)
54adantr 274 . . . 4 ((𝜑𝑗 ∈ ℕ) → 𝑍 ∈ ℕ)
63, 5nnmulcld 8876 . . 3 ((𝜑𝑗 ∈ ℕ) → (𝑗 · 𝑍) ∈ ℕ)
72, 6ffvelrnd 5602 . 2 ((𝜑𝑗 ∈ ℕ) → (𝐹‘(𝑗 · 𝑍)) ∈ ℝ)
8 cvg1nlem.g . 2 𝐺 = (𝑗 ∈ ℕ ↦ (𝐹‘(𝑗 · 𝑍)))
97, 8fmptd 5620 1 (𝜑𝐺:ℕ⟶ℝ)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103   = wceq 1335  wcel 2128  wral 2435   class class class wbr 3965  cmpt 4025  wf 5165  cfv 5169  (class class class)co 5821  cr 7725   + caddc 7729   · cmul 7731   < clt 7906   / cdiv 8539  cn 8827  cuz 9433  +crp 9553
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-14 2131  ax-ext 2139  ax-sep 4082  ax-pow 4135  ax-pr 4169  ax-cnex 7817  ax-resscn 7818  ax-1cn 7819  ax-1re 7820  ax-icn 7821  ax-addcl 7822  ax-addrcl 7823  ax-mulcl 7824  ax-mulcom 7827  ax-addass 7828  ax-mulass 7829  ax-distr 7830  ax-1rid 7833  ax-cnre 7837
This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1338  df-nf 1441  df-sb 1743  df-eu 2009  df-mo 2010  df-clab 2144  df-cleq 2150  df-clel 2153  df-nfc 2288  df-ral 2440  df-rex 2441  df-rab 2444  df-v 2714  df-sbc 2938  df-un 3106  df-in 3108  df-ss 3115  df-pw 3545  df-sn 3566  df-pr 3567  df-op 3569  df-uni 3773  df-int 3808  df-br 3966  df-opab 4026  df-mpt 4027  df-id 4253  df-xp 4591  df-rel 4592  df-cnv 4593  df-co 4594  df-dm 4595  df-rn 4596  df-res 4597  df-ima 4598  df-iota 5134  df-fun 5171  df-fn 5172  df-f 5173  df-fv 5177  df-ov 5824  df-inn 8828
This theorem is referenced by:  cvg1nlemres  10878
  Copyright terms: Public domain W3C validator