| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > cvg1nlemf | GIF version | ||
| Description: Lemma for cvg1n 11372. The modified sequence 𝐺 is a sequence. (Contributed by Jim Kingdon, 1-Aug-2021.) |
| Ref | Expression |
|---|---|
| cvg1n.f | ⊢ (𝜑 → 𝐹:ℕ⟶ℝ) |
| cvg1n.c | ⊢ (𝜑 → 𝐶 ∈ ℝ+) |
| cvg1n.cau | ⊢ (𝜑 → ∀𝑛 ∈ ℕ ∀𝑘 ∈ (ℤ≥‘𝑛)((𝐹‘𝑛) < ((𝐹‘𝑘) + (𝐶 / 𝑛)) ∧ (𝐹‘𝑘) < ((𝐹‘𝑛) + (𝐶 / 𝑛)))) |
| cvg1nlem.g | ⊢ 𝐺 = (𝑗 ∈ ℕ ↦ (𝐹‘(𝑗 · 𝑍))) |
| cvg1nlem.z | ⊢ (𝜑 → 𝑍 ∈ ℕ) |
| cvg1nlem.start | ⊢ (𝜑 → 𝐶 < 𝑍) |
| Ref | Expression |
|---|---|
| cvg1nlemf | ⊢ (𝜑 → 𝐺:ℕ⟶ℝ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cvg1n.f | . . . 4 ⊢ (𝜑 → 𝐹:ℕ⟶ℝ) | |
| 2 | 1 | adantr 276 | . . 3 ⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → 𝐹:ℕ⟶ℝ) |
| 3 | simpr 110 | . . . 4 ⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → 𝑗 ∈ ℕ) | |
| 4 | cvg1nlem.z | . . . . 5 ⊢ (𝜑 → 𝑍 ∈ ℕ) | |
| 5 | 4 | adantr 276 | . . . 4 ⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → 𝑍 ∈ ℕ) |
| 6 | 3, 5 | nnmulcld 9105 | . . 3 ⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → (𝑗 · 𝑍) ∈ ℕ) |
| 7 | 2, 6 | ffvelcdmd 5729 | . 2 ⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → (𝐹‘(𝑗 · 𝑍)) ∈ ℝ) |
| 8 | cvg1nlem.g | . 2 ⊢ 𝐺 = (𝑗 ∈ ℕ ↦ (𝐹‘(𝑗 · 𝑍))) | |
| 9 | 7, 8 | fmptd 5747 | 1 ⊢ (𝜑 → 𝐺:ℕ⟶ℝ) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1373 ∈ wcel 2177 ∀wral 2485 class class class wbr 4051 ↦ cmpt 4113 ⟶wf 5276 ‘cfv 5280 (class class class)co 5957 ℝcr 7944 + caddc 7948 · cmul 7950 < clt 8127 / cdiv 8765 ℕcn 9056 ℤ≥cuz 9668 ℝ+crp 9795 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-14 2180 ax-ext 2188 ax-sep 4170 ax-pow 4226 ax-pr 4261 ax-cnex 8036 ax-resscn 8037 ax-1cn 8038 ax-1re 8039 ax-icn 8040 ax-addcl 8041 ax-addrcl 8042 ax-mulcl 8043 ax-mulcom 8046 ax-addass 8047 ax-mulass 8048 ax-distr 8049 ax-1rid 8052 ax-cnre 8056 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ral 2490 df-rex 2491 df-rab 2494 df-v 2775 df-sbc 3003 df-un 3174 df-in 3176 df-ss 3183 df-pw 3623 df-sn 3644 df-pr 3645 df-op 3647 df-uni 3857 df-int 3892 df-br 4052 df-opab 4114 df-mpt 4115 df-id 4348 df-xp 4689 df-rel 4690 df-cnv 4691 df-co 4692 df-dm 4693 df-rn 4694 df-res 4695 df-ima 4696 df-iota 5241 df-fun 5282 df-fn 5283 df-f 5284 df-fv 5288 df-ov 5960 df-inn 9057 |
| This theorem is referenced by: cvg1nlemres 11371 |
| Copyright terms: Public domain | W3C validator |