![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > cvg1nlemf | GIF version |
Description: Lemma for cvg1n 10990. The modified sequence 𝐺 is a sequence. (Contributed by Jim Kingdon, 1-Aug-2021.) |
Ref | Expression |
---|---|
cvg1n.f | ⊢ (𝜑 → 𝐹:ℕ⟶ℝ) |
cvg1n.c | ⊢ (𝜑 → 𝐶 ∈ ℝ+) |
cvg1n.cau | ⊢ (𝜑 → ∀𝑛 ∈ ℕ ∀𝑘 ∈ (ℤ≥‘𝑛)((𝐹‘𝑛) < ((𝐹‘𝑘) + (𝐶 / 𝑛)) ∧ (𝐹‘𝑘) < ((𝐹‘𝑛) + (𝐶 / 𝑛)))) |
cvg1nlem.g | ⊢ 𝐺 = (𝑗 ∈ ℕ ↦ (𝐹‘(𝑗 · 𝑍))) |
cvg1nlem.z | ⊢ (𝜑 → 𝑍 ∈ ℕ) |
cvg1nlem.start | ⊢ (𝜑 → 𝐶 < 𝑍) |
Ref | Expression |
---|---|
cvg1nlemf | ⊢ (𝜑 → 𝐺:ℕ⟶ℝ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cvg1n.f | . . . 4 ⊢ (𝜑 → 𝐹:ℕ⟶ℝ) | |
2 | 1 | adantr 276 | . . 3 ⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → 𝐹:ℕ⟶ℝ) |
3 | simpr 110 | . . . 4 ⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → 𝑗 ∈ ℕ) | |
4 | cvg1nlem.z | . . . . 5 ⊢ (𝜑 → 𝑍 ∈ ℕ) | |
5 | 4 | adantr 276 | . . . 4 ⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → 𝑍 ∈ ℕ) |
6 | 3, 5 | nnmulcld 8966 | . . 3 ⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → (𝑗 · 𝑍) ∈ ℕ) |
7 | 2, 6 | ffvelcdmd 5652 | . 2 ⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → (𝐹‘(𝑗 · 𝑍)) ∈ ℝ) |
8 | cvg1nlem.g | . 2 ⊢ 𝐺 = (𝑗 ∈ ℕ ↦ (𝐹‘(𝑗 · 𝑍))) | |
9 | 7, 8 | fmptd 5670 | 1 ⊢ (𝜑 → 𝐺:ℕ⟶ℝ) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 = wceq 1353 ∈ wcel 2148 ∀wral 2455 class class class wbr 4003 ↦ cmpt 4064 ⟶wf 5212 ‘cfv 5216 (class class class)co 5874 ℝcr 7809 + caddc 7813 · cmul 7815 < clt 7990 / cdiv 8627 ℕcn 8917 ℤ≥cuz 9526 ℝ+crp 9651 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-14 2151 ax-ext 2159 ax-sep 4121 ax-pow 4174 ax-pr 4209 ax-cnex 7901 ax-resscn 7902 ax-1cn 7903 ax-1re 7904 ax-icn 7905 ax-addcl 7906 ax-addrcl 7907 ax-mulcl 7908 ax-mulcom 7911 ax-addass 7912 ax-mulass 7913 ax-distr 7914 ax-1rid 7917 ax-cnre 7921 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ral 2460 df-rex 2461 df-rab 2464 df-v 2739 df-sbc 2963 df-un 3133 df-in 3135 df-ss 3142 df-pw 3577 df-sn 3598 df-pr 3599 df-op 3601 df-uni 3810 df-int 3845 df-br 4004 df-opab 4065 df-mpt 4066 df-id 4293 df-xp 4632 df-rel 4633 df-cnv 4634 df-co 4635 df-dm 4636 df-rn 4637 df-res 4638 df-ima 4639 df-iota 5178 df-fun 5218 df-fn 5219 df-f 5220 df-fv 5224 df-ov 5877 df-inn 8918 |
This theorem is referenced by: cvg1nlemres 10989 |
Copyright terms: Public domain | W3C validator |