| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > cvg1nlemf | GIF version | ||
| Description: Lemma for cvg1n 11492. The modified sequence 𝐺 is a sequence. (Contributed by Jim Kingdon, 1-Aug-2021.) |
| Ref | Expression |
|---|---|
| cvg1n.f | ⊢ (𝜑 → 𝐹:ℕ⟶ℝ) |
| cvg1n.c | ⊢ (𝜑 → 𝐶 ∈ ℝ+) |
| cvg1n.cau | ⊢ (𝜑 → ∀𝑛 ∈ ℕ ∀𝑘 ∈ (ℤ≥‘𝑛)((𝐹‘𝑛) < ((𝐹‘𝑘) + (𝐶 / 𝑛)) ∧ (𝐹‘𝑘) < ((𝐹‘𝑛) + (𝐶 / 𝑛)))) |
| cvg1nlem.g | ⊢ 𝐺 = (𝑗 ∈ ℕ ↦ (𝐹‘(𝑗 · 𝑍))) |
| cvg1nlem.z | ⊢ (𝜑 → 𝑍 ∈ ℕ) |
| cvg1nlem.start | ⊢ (𝜑 → 𝐶 < 𝑍) |
| Ref | Expression |
|---|---|
| cvg1nlemf | ⊢ (𝜑 → 𝐺:ℕ⟶ℝ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cvg1n.f | . . . 4 ⊢ (𝜑 → 𝐹:ℕ⟶ℝ) | |
| 2 | 1 | adantr 276 | . . 3 ⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → 𝐹:ℕ⟶ℝ) |
| 3 | simpr 110 | . . . 4 ⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → 𝑗 ∈ ℕ) | |
| 4 | cvg1nlem.z | . . . . 5 ⊢ (𝜑 → 𝑍 ∈ ℕ) | |
| 5 | 4 | adantr 276 | . . . 4 ⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → 𝑍 ∈ ℕ) |
| 6 | 3, 5 | nnmulcld 9155 | . . 3 ⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → (𝑗 · 𝑍) ∈ ℕ) |
| 7 | 2, 6 | ffvelcdmd 5770 | . 2 ⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → (𝐹‘(𝑗 · 𝑍)) ∈ ℝ) |
| 8 | cvg1nlem.g | . 2 ⊢ 𝐺 = (𝑗 ∈ ℕ ↦ (𝐹‘(𝑗 · 𝑍))) | |
| 9 | 7, 8 | fmptd 5788 | 1 ⊢ (𝜑 → 𝐺:ℕ⟶ℝ) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1395 ∈ wcel 2200 ∀wral 2508 class class class wbr 4082 ↦ cmpt 4144 ⟶wf 5313 ‘cfv 5317 (class class class)co 6000 ℝcr 7994 + caddc 7998 · cmul 8000 < clt 8177 / cdiv 8815 ℕcn 9106 ℤ≥cuz 9718 ℝ+crp 9845 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-pow 4257 ax-pr 4292 ax-cnex 8086 ax-resscn 8087 ax-1cn 8088 ax-1re 8089 ax-icn 8090 ax-addcl 8091 ax-addrcl 8092 ax-mulcl 8093 ax-mulcom 8096 ax-addass 8097 ax-mulass 8098 ax-distr 8099 ax-1rid 8102 ax-cnre 8106 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-rab 2517 df-v 2801 df-sbc 3029 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-int 3923 df-br 4083 df-opab 4145 df-mpt 4146 df-id 4383 df-xp 4724 df-rel 4725 df-cnv 4726 df-co 4727 df-dm 4728 df-rn 4729 df-res 4730 df-ima 4731 df-iota 5277 df-fun 5319 df-fn 5320 df-f 5321 df-fv 5325 df-ov 6003 df-inn 9107 |
| This theorem is referenced by: cvg1nlemres 11491 |
| Copyright terms: Public domain | W3C validator |