![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > cvg1nlemf | GIF version |
Description: Lemma for cvg1n 11130. The modified sequence 𝐺 is a sequence. (Contributed by Jim Kingdon, 1-Aug-2021.) |
Ref | Expression |
---|---|
cvg1n.f | ⊢ (𝜑 → 𝐹:ℕ⟶ℝ) |
cvg1n.c | ⊢ (𝜑 → 𝐶 ∈ ℝ+) |
cvg1n.cau | ⊢ (𝜑 → ∀𝑛 ∈ ℕ ∀𝑘 ∈ (ℤ≥‘𝑛)((𝐹‘𝑛) < ((𝐹‘𝑘) + (𝐶 / 𝑛)) ∧ (𝐹‘𝑘) < ((𝐹‘𝑛) + (𝐶 / 𝑛)))) |
cvg1nlem.g | ⊢ 𝐺 = (𝑗 ∈ ℕ ↦ (𝐹‘(𝑗 · 𝑍))) |
cvg1nlem.z | ⊢ (𝜑 → 𝑍 ∈ ℕ) |
cvg1nlem.start | ⊢ (𝜑 → 𝐶 < 𝑍) |
Ref | Expression |
---|---|
cvg1nlemf | ⊢ (𝜑 → 𝐺:ℕ⟶ℝ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cvg1n.f | . . . 4 ⊢ (𝜑 → 𝐹:ℕ⟶ℝ) | |
2 | 1 | adantr 276 | . . 3 ⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → 𝐹:ℕ⟶ℝ) |
3 | simpr 110 | . . . 4 ⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → 𝑗 ∈ ℕ) | |
4 | cvg1nlem.z | . . . . 5 ⊢ (𝜑 → 𝑍 ∈ ℕ) | |
5 | 4 | adantr 276 | . . . 4 ⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → 𝑍 ∈ ℕ) |
6 | 3, 5 | nnmulcld 9031 | . . 3 ⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → (𝑗 · 𝑍) ∈ ℕ) |
7 | 2, 6 | ffvelcdmd 5694 | . 2 ⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → (𝐹‘(𝑗 · 𝑍)) ∈ ℝ) |
8 | cvg1nlem.g | . 2 ⊢ 𝐺 = (𝑗 ∈ ℕ ↦ (𝐹‘(𝑗 · 𝑍))) | |
9 | 7, 8 | fmptd 5712 | 1 ⊢ (𝜑 → 𝐺:ℕ⟶ℝ) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 = wceq 1364 ∈ wcel 2164 ∀wral 2472 class class class wbr 4029 ↦ cmpt 4090 ⟶wf 5250 ‘cfv 5254 (class class class)co 5918 ℝcr 7871 + caddc 7875 · cmul 7877 < clt 8054 / cdiv 8691 ℕcn 8982 ℤ≥cuz 9592 ℝ+crp 9719 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-14 2167 ax-ext 2175 ax-sep 4147 ax-pow 4203 ax-pr 4238 ax-cnex 7963 ax-resscn 7964 ax-1cn 7965 ax-1re 7966 ax-icn 7967 ax-addcl 7968 ax-addrcl 7969 ax-mulcl 7970 ax-mulcom 7973 ax-addass 7974 ax-mulass 7975 ax-distr 7976 ax-1rid 7979 ax-cnre 7983 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ral 2477 df-rex 2478 df-rab 2481 df-v 2762 df-sbc 2986 df-un 3157 df-in 3159 df-ss 3166 df-pw 3603 df-sn 3624 df-pr 3625 df-op 3627 df-uni 3836 df-int 3871 df-br 4030 df-opab 4091 df-mpt 4092 df-id 4324 df-xp 4665 df-rel 4666 df-cnv 4667 df-co 4668 df-dm 4669 df-rn 4670 df-res 4671 df-ima 4672 df-iota 5215 df-fun 5256 df-fn 5257 df-f 5258 df-fv 5262 df-ov 5921 df-inn 8983 |
This theorem is referenced by: cvg1nlemres 11129 |
Copyright terms: Public domain | W3C validator |