Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > cvg1nlemf | GIF version |
Description: Lemma for cvg1n 10879. The modified sequence 𝐺 is a sequence. (Contributed by Jim Kingdon, 1-Aug-2021.) |
Ref | Expression |
---|---|
cvg1n.f | ⊢ (𝜑 → 𝐹:ℕ⟶ℝ) |
cvg1n.c | ⊢ (𝜑 → 𝐶 ∈ ℝ+) |
cvg1n.cau | ⊢ (𝜑 → ∀𝑛 ∈ ℕ ∀𝑘 ∈ (ℤ≥‘𝑛)((𝐹‘𝑛) < ((𝐹‘𝑘) + (𝐶 / 𝑛)) ∧ (𝐹‘𝑘) < ((𝐹‘𝑛) + (𝐶 / 𝑛)))) |
cvg1nlem.g | ⊢ 𝐺 = (𝑗 ∈ ℕ ↦ (𝐹‘(𝑗 · 𝑍))) |
cvg1nlem.z | ⊢ (𝜑 → 𝑍 ∈ ℕ) |
cvg1nlem.start | ⊢ (𝜑 → 𝐶 < 𝑍) |
Ref | Expression |
---|---|
cvg1nlemf | ⊢ (𝜑 → 𝐺:ℕ⟶ℝ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cvg1n.f | . . . 4 ⊢ (𝜑 → 𝐹:ℕ⟶ℝ) | |
2 | 1 | adantr 274 | . . 3 ⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → 𝐹:ℕ⟶ℝ) |
3 | simpr 109 | . . . 4 ⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → 𝑗 ∈ ℕ) | |
4 | cvg1nlem.z | . . . . 5 ⊢ (𝜑 → 𝑍 ∈ ℕ) | |
5 | 4 | adantr 274 | . . . 4 ⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → 𝑍 ∈ ℕ) |
6 | 3, 5 | nnmulcld 8876 | . . 3 ⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → (𝑗 · 𝑍) ∈ ℕ) |
7 | 2, 6 | ffvelrnd 5602 | . 2 ⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → (𝐹‘(𝑗 · 𝑍)) ∈ ℝ) |
8 | cvg1nlem.g | . 2 ⊢ 𝐺 = (𝑗 ∈ ℕ ↦ (𝐹‘(𝑗 · 𝑍))) | |
9 | 7, 8 | fmptd 5620 | 1 ⊢ (𝜑 → 𝐺:ℕ⟶ℝ) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 = wceq 1335 ∈ wcel 2128 ∀wral 2435 class class class wbr 3965 ↦ cmpt 4025 ⟶wf 5165 ‘cfv 5169 (class class class)co 5821 ℝcr 7725 + caddc 7729 · cmul 7731 < clt 7906 / cdiv 8539 ℕcn 8827 ℤ≥cuz 9433 ℝ+crp 9553 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-14 2131 ax-ext 2139 ax-sep 4082 ax-pow 4135 ax-pr 4169 ax-cnex 7817 ax-resscn 7818 ax-1cn 7819 ax-1re 7820 ax-icn 7821 ax-addcl 7822 ax-addrcl 7823 ax-mulcl 7824 ax-mulcom 7827 ax-addass 7828 ax-mulass 7829 ax-distr 7830 ax-1rid 7833 ax-cnre 7837 |
This theorem depends on definitions: df-bi 116 df-3an 965 df-tru 1338 df-nf 1441 df-sb 1743 df-eu 2009 df-mo 2010 df-clab 2144 df-cleq 2150 df-clel 2153 df-nfc 2288 df-ral 2440 df-rex 2441 df-rab 2444 df-v 2714 df-sbc 2938 df-un 3106 df-in 3108 df-ss 3115 df-pw 3545 df-sn 3566 df-pr 3567 df-op 3569 df-uni 3773 df-int 3808 df-br 3966 df-opab 4026 df-mpt 4027 df-id 4253 df-xp 4591 df-rel 4592 df-cnv 4593 df-co 4594 df-dm 4595 df-rn 4596 df-res 4597 df-ima 4598 df-iota 5134 df-fun 5171 df-fn 5172 df-f 5173 df-fv 5177 df-ov 5824 df-inn 8828 |
This theorem is referenced by: cvg1nlemres 10878 |
Copyright terms: Public domain | W3C validator |