Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > cvg1nlemcxze | Unicode version |
Description: Lemma for cvg1n 10963. Rearranging an expression related to the rate of convergence. (Contributed by Jim Kingdon, 6-Aug-2021.) |
Ref | Expression |
---|---|
cvg1nlemcxze.c | |
cvg1nlemcxze.x | |
cvg1nlemcxze.z | |
cvg1nlemcxze.e | |
cvg1nlemcxze.a | |
cvg1nlemcxze.1 |
Ref | Expression |
---|---|
cvg1nlemcxze |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cvg1nlemcxze.c | . . . . . . . 8 | |
2 | 1 | rpcnd 9669 | . . . . . . 7 |
3 | 2cnd 8965 | . . . . . . 7 | |
4 | cvg1nlemcxze.x | . . . . . . . 8 | |
5 | 4 | rpcnd 9669 | . . . . . . 7 |
6 | 4 | rpap0d 9673 | . . . . . . 7 # |
7 | 2, 3, 5, 6 | div23apd 8758 | . . . . . 6 |
8 | 2rp 9629 | . . . . . . . . . . . . 13 | |
9 | 8 | a1i 9 | . . . . . . . . . . . 12 |
10 | 1, 9 | rpmulcld 9684 | . . . . . . . . . . 11 |
11 | 10, 4 | rpdivcld 9685 | . . . . . . . . . 10 |
12 | cvg1nlemcxze.z | . . . . . . . . . . 11 | |
13 | 12 | nnrpd 9665 | . . . . . . . . . 10 |
14 | 11, 13 | rpdivcld 9685 | . . . . . . . . 9 |
15 | 14 | rpred 9667 | . . . . . . . 8 |
16 | cvg1nlemcxze.a | . . . . . . . . . 10 | |
17 | 16 | nnred 8905 | . . . . . . . . 9 |
18 | 15, 17 | readdcld 7961 | . . . . . . . 8 |
19 | cvg1nlemcxze.e | . . . . . . . . 9 | |
20 | 19 | nnred 8905 | . . . . . . . 8 |
21 | 16 | nnrpd 9665 | . . . . . . . . 9 |
22 | 15, 21 | ltaddrpd 9701 | . . . . . . . 8 |
23 | cvg1nlemcxze.1 | . . . . . . . 8 | |
24 | 15, 18, 20, 22, 23 | lttrd 8057 | . . . . . . 7 |
25 | 11 | rpred 9667 | . . . . . . . 8 |
26 | 25, 20, 13 | ltdivmul2d 9720 | . . . . . . 7 |
27 | 24, 26 | mpbid 147 | . . . . . 6 |
28 | 7, 27 | eqbrtrrd 4022 | . . . . 5 |
29 | 1 | rpred 9667 | . . . . . . 7 |
30 | 29, 4 | rerpdivcld 9699 | . . . . . 6 |
31 | 19, 12 | nnmulcld 8941 | . . . . . . 7 |
32 | 31 | nnred 8905 | . . . . . 6 |
33 | 30, 32, 9 | ltmuldivd 9715 | . . . . 5 |
34 | 28, 33 | mpbid 147 | . . . 4 |
35 | 29, 9, 32, 4 | lt2mul2divd 9736 | . . . 4 |
36 | 34, 35 | mpbird 167 | . . 3 |
37 | 31 | nncnd 8906 | . . . 4 |
38 | 37, 5 | mulcomd 7953 | . . 3 |
39 | 36, 38 | breqtrd 4024 | . 2 |
40 | 4 | rpred 9667 | . . 3 |
41 | 31 | nnrpd 9665 | . . 3 |
42 | 29, 9, 40, 41 | lt2mul2divd 9736 | . 2 |
43 | 39, 42 | mpbid 147 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wcel 2146 class class class wbr 3998 (class class class)co 5865 caddc 7789 cmul 7791 clt 7966 cdiv 8602 cn 8892 c2 8943 crp 9624 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-13 2148 ax-14 2149 ax-ext 2157 ax-sep 4116 ax-pow 4169 ax-pr 4203 ax-un 4427 ax-setind 4530 ax-cnex 7877 ax-resscn 7878 ax-1cn 7879 ax-1re 7880 ax-icn 7881 ax-addcl 7882 ax-addrcl 7883 ax-mulcl 7884 ax-mulrcl 7885 ax-addcom 7886 ax-mulcom 7887 ax-addass 7888 ax-mulass 7889 ax-distr 7890 ax-i2m1 7891 ax-0lt1 7892 ax-1rid 7893 ax-0id 7894 ax-rnegex 7895 ax-precex 7896 ax-cnre 7897 ax-pre-ltirr 7898 ax-pre-ltwlin 7899 ax-pre-lttrn 7900 ax-pre-apti 7901 ax-pre-ltadd 7902 ax-pre-mulgt0 7903 ax-pre-mulext 7904 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1459 df-sb 1761 df-eu 2027 df-mo 2028 df-clab 2162 df-cleq 2168 df-clel 2171 df-nfc 2306 df-ne 2346 df-nel 2441 df-ral 2458 df-rex 2459 df-reu 2460 df-rmo 2461 df-rab 2462 df-v 2737 df-sbc 2961 df-dif 3129 df-un 3131 df-in 3133 df-ss 3140 df-pw 3574 df-sn 3595 df-pr 3596 df-op 3598 df-uni 3806 df-int 3841 df-br 3999 df-opab 4060 df-id 4287 df-po 4290 df-iso 4291 df-xp 4626 df-rel 4627 df-cnv 4628 df-co 4629 df-dm 4630 df-iota 5170 df-fun 5210 df-fv 5216 df-riota 5821 df-ov 5868 df-oprab 5869 df-mpo 5870 df-pnf 7968 df-mnf 7969 df-xr 7970 df-ltxr 7971 df-le 7972 df-sub 8104 df-neg 8105 df-reap 8506 df-ap 8513 df-div 8603 df-inn 8893 df-2 8951 df-rp 9625 |
This theorem is referenced by: cvg1nlemres 10962 |
Copyright terms: Public domain | W3C validator |