ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cvg1nlemcxze Unicode version

Theorem cvg1nlemcxze 11326
Description: Lemma for cvg1n 11330. Rearranging an expression related to the rate of convergence. (Contributed by Jim Kingdon, 6-Aug-2021.)
Hypotheses
Ref Expression
cvg1nlemcxze.c  |-  ( ph  ->  C  e.  RR+ )
cvg1nlemcxze.x  |-  ( ph  ->  X  e.  RR+ )
cvg1nlemcxze.z  |-  ( ph  ->  Z  e.  NN )
cvg1nlemcxze.e  |-  ( ph  ->  E  e.  NN )
cvg1nlemcxze.a  |-  ( ph  ->  A  e.  NN )
cvg1nlemcxze.1  |-  ( ph  ->  ( ( ( ( C  x.  2 )  /  X )  /  Z )  +  A
)  <  E )
Assertion
Ref Expression
cvg1nlemcxze  |-  ( ph  ->  ( C  /  ( E  x.  Z )
)  <  ( X  /  2 ) )

Proof of Theorem cvg1nlemcxze
StepHypRef Expression
1 cvg1nlemcxze.c . . . . . . . 8  |-  ( ph  ->  C  e.  RR+ )
21rpcnd 9822 . . . . . . 7  |-  ( ph  ->  C  e.  CC )
3 2cnd 9111 . . . . . . 7  |-  ( ph  ->  2  e.  CC )
4 cvg1nlemcxze.x . . . . . . . 8  |-  ( ph  ->  X  e.  RR+ )
54rpcnd 9822 . . . . . . 7  |-  ( ph  ->  X  e.  CC )
64rpap0d 9826 . . . . . . 7  |-  ( ph  ->  X #  0 )
72, 3, 5, 6div23apd 8903 . . . . . 6  |-  ( ph  ->  ( ( C  x.  2 )  /  X
)  =  ( ( C  /  X )  x.  2 ) )
8 2rp 9782 . . . . . . . . . . . . 13  |-  2  e.  RR+
98a1i 9 . . . . . . . . . . . 12  |-  ( ph  ->  2  e.  RR+ )
101, 9rpmulcld 9837 . . . . . . . . . . 11  |-  ( ph  ->  ( C  x.  2 )  e.  RR+ )
1110, 4rpdivcld 9838 . . . . . . . . . 10  |-  ( ph  ->  ( ( C  x.  2 )  /  X
)  e.  RR+ )
12 cvg1nlemcxze.z . . . . . . . . . . 11  |-  ( ph  ->  Z  e.  NN )
1312nnrpd 9818 . . . . . . . . . 10  |-  ( ph  ->  Z  e.  RR+ )
1411, 13rpdivcld 9838 . . . . . . . . 9  |-  ( ph  ->  ( ( ( C  x.  2 )  /  X )  /  Z
)  e.  RR+ )
1514rpred 9820 . . . . . . . 8  |-  ( ph  ->  ( ( ( C  x.  2 )  /  X )  /  Z
)  e.  RR )
16 cvg1nlemcxze.a . . . . . . . . . 10  |-  ( ph  ->  A  e.  NN )
1716nnred 9051 . . . . . . . . 9  |-  ( ph  ->  A  e.  RR )
1815, 17readdcld 8104 . . . . . . . 8  |-  ( ph  ->  ( ( ( ( C  x.  2 )  /  X )  /  Z )  +  A
)  e.  RR )
19 cvg1nlemcxze.e . . . . . . . . 9  |-  ( ph  ->  E  e.  NN )
2019nnred 9051 . . . . . . . 8  |-  ( ph  ->  E  e.  RR )
2116nnrpd 9818 . . . . . . . . 9  |-  ( ph  ->  A  e.  RR+ )
2215, 21ltaddrpd 9854 . . . . . . . 8  |-  ( ph  ->  ( ( ( C  x.  2 )  /  X )  /  Z
)  <  ( (
( ( C  x.  2 )  /  X
)  /  Z )  +  A ) )
23 cvg1nlemcxze.1 . . . . . . . 8  |-  ( ph  ->  ( ( ( ( C  x.  2 )  /  X )  /  Z )  +  A
)  <  E )
2415, 18, 20, 22, 23lttrd 8200 . . . . . . 7  |-  ( ph  ->  ( ( ( C  x.  2 )  /  X )  /  Z
)  <  E )
2511rpred 9820 . . . . . . . 8  |-  ( ph  ->  ( ( C  x.  2 )  /  X
)  e.  RR )
2625, 20, 13ltdivmul2d 9873 . . . . . . 7  |-  ( ph  ->  ( ( ( ( C  x.  2 )  /  X )  /  Z )  <  E  <->  ( ( C  x.  2 )  /  X )  <  ( E  x.  Z ) ) )
2724, 26mpbid 147 . . . . . 6  |-  ( ph  ->  ( ( C  x.  2 )  /  X
)  <  ( E  x.  Z ) )
287, 27eqbrtrrd 4069 . . . . 5  |-  ( ph  ->  ( ( C  /  X )  x.  2 )  <  ( E  x.  Z ) )
291rpred 9820 . . . . . . 7  |-  ( ph  ->  C  e.  RR )
3029, 4rerpdivcld 9852 . . . . . 6  |-  ( ph  ->  ( C  /  X
)  e.  RR )
3119, 12nnmulcld 9087 . . . . . . 7  |-  ( ph  ->  ( E  x.  Z
)  e.  NN )
3231nnred 9051 . . . . . 6  |-  ( ph  ->  ( E  x.  Z
)  e.  RR )
3330, 32, 9ltmuldivd 9868 . . . . 5  |-  ( ph  ->  ( ( ( C  /  X )  x.  2 )  <  ( E  x.  Z )  <->  ( C  /  X )  <  ( ( E  x.  Z )  / 
2 ) ) )
3428, 33mpbid 147 . . . 4  |-  ( ph  ->  ( C  /  X
)  <  ( ( E  x.  Z )  /  2 ) )
3529, 9, 32, 4lt2mul2divd 9889 . . . 4  |-  ( ph  ->  ( ( C  x.  2 )  <  (
( E  x.  Z
)  x.  X )  <-> 
( C  /  X
)  <  ( ( E  x.  Z )  /  2 ) ) )
3634, 35mpbird 167 . . 3  |-  ( ph  ->  ( C  x.  2 )  <  ( ( E  x.  Z )  x.  X ) )
3731nncnd 9052 . . . 4  |-  ( ph  ->  ( E  x.  Z
)  e.  CC )
3837, 5mulcomd 8096 . . 3  |-  ( ph  ->  ( ( E  x.  Z )  x.  X
)  =  ( X  x.  ( E  x.  Z ) ) )
3936, 38breqtrd 4071 . 2  |-  ( ph  ->  ( C  x.  2 )  <  ( X  x.  ( E  x.  Z ) ) )
404rpred 9820 . . 3  |-  ( ph  ->  X  e.  RR )
4131nnrpd 9818 . . 3  |-  ( ph  ->  ( E  x.  Z
)  e.  RR+ )
4229, 9, 40, 41lt2mul2divd 9889 . 2  |-  ( ph  ->  ( ( C  x.  2 )  <  ( X  x.  ( E  x.  Z ) )  <->  ( C  /  ( E  x.  Z ) )  < 
( X  /  2
) ) )
4339, 42mpbid 147 1  |-  ( ph  ->  ( C  /  ( E  x.  Z )
)  <  ( X  /  2 ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    e. wcel 2176   class class class wbr 4045  (class class class)co 5946    + caddc 7930    x. cmul 7932    < clt 8109    / cdiv 8747   NNcn 9038   2c2 9089   RR+crp 9777
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-sep 4163  ax-pow 4219  ax-pr 4254  ax-un 4481  ax-setind 4586  ax-cnex 8018  ax-resscn 8019  ax-1cn 8020  ax-1re 8021  ax-icn 8022  ax-addcl 8023  ax-addrcl 8024  ax-mulcl 8025  ax-mulrcl 8026  ax-addcom 8027  ax-mulcom 8028  ax-addass 8029  ax-mulass 8030  ax-distr 8031  ax-i2m1 8032  ax-0lt1 8033  ax-1rid 8034  ax-0id 8035  ax-rnegex 8036  ax-precex 8037  ax-cnre 8038  ax-pre-ltirr 8039  ax-pre-ltwlin 8040  ax-pre-lttrn 8041  ax-pre-apti 8042  ax-pre-ltadd 8043  ax-pre-mulgt0 8044  ax-pre-mulext 8045
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-nel 2472  df-ral 2489  df-rex 2490  df-reu 2491  df-rmo 2492  df-rab 2493  df-v 2774  df-sbc 2999  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-int 3886  df-br 4046  df-opab 4107  df-id 4341  df-po 4344  df-iso 4345  df-xp 4682  df-rel 4683  df-cnv 4684  df-co 4685  df-dm 4686  df-iota 5233  df-fun 5274  df-fv 5280  df-riota 5901  df-ov 5949  df-oprab 5950  df-mpo 5951  df-pnf 8111  df-mnf 8112  df-xr 8113  df-ltxr 8114  df-le 8115  df-sub 8247  df-neg 8248  df-reap 8650  df-ap 8657  df-div 8748  df-inn 9039  df-2 9097  df-rp 9778
This theorem is referenced by:  cvg1nlemres  11329
  Copyright terms: Public domain W3C validator