ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cvg1nlemcxze Unicode version

Theorem cvg1nlemcxze 11166
Description: Lemma for cvg1n 11170. Rearranging an expression related to the rate of convergence. (Contributed by Jim Kingdon, 6-Aug-2021.)
Hypotheses
Ref Expression
cvg1nlemcxze.c  |-  ( ph  ->  C  e.  RR+ )
cvg1nlemcxze.x  |-  ( ph  ->  X  e.  RR+ )
cvg1nlemcxze.z  |-  ( ph  ->  Z  e.  NN )
cvg1nlemcxze.e  |-  ( ph  ->  E  e.  NN )
cvg1nlemcxze.a  |-  ( ph  ->  A  e.  NN )
cvg1nlemcxze.1  |-  ( ph  ->  ( ( ( ( C  x.  2 )  /  X )  /  Z )  +  A
)  <  E )
Assertion
Ref Expression
cvg1nlemcxze  |-  ( ph  ->  ( C  /  ( E  x.  Z )
)  <  ( X  /  2 ) )

Proof of Theorem cvg1nlemcxze
StepHypRef Expression
1 cvg1nlemcxze.c . . . . . . . 8  |-  ( ph  ->  C  e.  RR+ )
21rpcnd 9792 . . . . . . 7  |-  ( ph  ->  C  e.  CC )
3 2cnd 9082 . . . . . . 7  |-  ( ph  ->  2  e.  CC )
4 cvg1nlemcxze.x . . . . . . . 8  |-  ( ph  ->  X  e.  RR+ )
54rpcnd 9792 . . . . . . 7  |-  ( ph  ->  X  e.  CC )
64rpap0d 9796 . . . . . . 7  |-  ( ph  ->  X #  0 )
72, 3, 5, 6div23apd 8874 . . . . . 6  |-  ( ph  ->  ( ( C  x.  2 )  /  X
)  =  ( ( C  /  X )  x.  2 ) )
8 2rp 9752 . . . . . . . . . . . . 13  |-  2  e.  RR+
98a1i 9 . . . . . . . . . . . 12  |-  ( ph  ->  2  e.  RR+ )
101, 9rpmulcld 9807 . . . . . . . . . . 11  |-  ( ph  ->  ( C  x.  2 )  e.  RR+ )
1110, 4rpdivcld 9808 . . . . . . . . . 10  |-  ( ph  ->  ( ( C  x.  2 )  /  X
)  e.  RR+ )
12 cvg1nlemcxze.z . . . . . . . . . . 11  |-  ( ph  ->  Z  e.  NN )
1312nnrpd 9788 . . . . . . . . . 10  |-  ( ph  ->  Z  e.  RR+ )
1411, 13rpdivcld 9808 . . . . . . . . 9  |-  ( ph  ->  ( ( ( C  x.  2 )  /  X )  /  Z
)  e.  RR+ )
1514rpred 9790 . . . . . . . 8  |-  ( ph  ->  ( ( ( C  x.  2 )  /  X )  /  Z
)  e.  RR )
16 cvg1nlemcxze.a . . . . . . . . . 10  |-  ( ph  ->  A  e.  NN )
1716nnred 9022 . . . . . . . . 9  |-  ( ph  ->  A  e.  RR )
1815, 17readdcld 8075 . . . . . . . 8  |-  ( ph  ->  ( ( ( ( C  x.  2 )  /  X )  /  Z )  +  A
)  e.  RR )
19 cvg1nlemcxze.e . . . . . . . . 9  |-  ( ph  ->  E  e.  NN )
2019nnred 9022 . . . . . . . 8  |-  ( ph  ->  E  e.  RR )
2116nnrpd 9788 . . . . . . . . 9  |-  ( ph  ->  A  e.  RR+ )
2215, 21ltaddrpd 9824 . . . . . . . 8  |-  ( ph  ->  ( ( ( C  x.  2 )  /  X )  /  Z
)  <  ( (
( ( C  x.  2 )  /  X
)  /  Z )  +  A ) )
23 cvg1nlemcxze.1 . . . . . . . 8  |-  ( ph  ->  ( ( ( ( C  x.  2 )  /  X )  /  Z )  +  A
)  <  E )
2415, 18, 20, 22, 23lttrd 8171 . . . . . . 7  |-  ( ph  ->  ( ( ( C  x.  2 )  /  X )  /  Z
)  <  E )
2511rpred 9790 . . . . . . . 8  |-  ( ph  ->  ( ( C  x.  2 )  /  X
)  e.  RR )
2625, 20, 13ltdivmul2d 9843 . . . . . . 7  |-  ( ph  ->  ( ( ( ( C  x.  2 )  /  X )  /  Z )  <  E  <->  ( ( C  x.  2 )  /  X )  <  ( E  x.  Z ) ) )
2724, 26mpbid 147 . . . . . 6  |-  ( ph  ->  ( ( C  x.  2 )  /  X
)  <  ( E  x.  Z ) )
287, 27eqbrtrrd 4058 . . . . 5  |-  ( ph  ->  ( ( C  /  X )  x.  2 )  <  ( E  x.  Z ) )
291rpred 9790 . . . . . . 7  |-  ( ph  ->  C  e.  RR )
3029, 4rerpdivcld 9822 . . . . . 6  |-  ( ph  ->  ( C  /  X
)  e.  RR )
3119, 12nnmulcld 9058 . . . . . . 7  |-  ( ph  ->  ( E  x.  Z
)  e.  NN )
3231nnred 9022 . . . . . 6  |-  ( ph  ->  ( E  x.  Z
)  e.  RR )
3330, 32, 9ltmuldivd 9838 . . . . 5  |-  ( ph  ->  ( ( ( C  /  X )  x.  2 )  <  ( E  x.  Z )  <->  ( C  /  X )  <  ( ( E  x.  Z )  / 
2 ) ) )
3428, 33mpbid 147 . . . 4  |-  ( ph  ->  ( C  /  X
)  <  ( ( E  x.  Z )  /  2 ) )
3529, 9, 32, 4lt2mul2divd 9859 . . . 4  |-  ( ph  ->  ( ( C  x.  2 )  <  (
( E  x.  Z
)  x.  X )  <-> 
( C  /  X
)  <  ( ( E  x.  Z )  /  2 ) ) )
3634, 35mpbird 167 . . 3  |-  ( ph  ->  ( C  x.  2 )  <  ( ( E  x.  Z )  x.  X ) )
3731nncnd 9023 . . . 4  |-  ( ph  ->  ( E  x.  Z
)  e.  CC )
3837, 5mulcomd 8067 . . 3  |-  ( ph  ->  ( ( E  x.  Z )  x.  X
)  =  ( X  x.  ( E  x.  Z ) ) )
3936, 38breqtrd 4060 . 2  |-  ( ph  ->  ( C  x.  2 )  <  ( X  x.  ( E  x.  Z ) ) )
404rpred 9790 . . 3  |-  ( ph  ->  X  e.  RR )
4131nnrpd 9788 . . 3  |-  ( ph  ->  ( E  x.  Z
)  e.  RR+ )
4229, 9, 40, 41lt2mul2divd 9859 . 2  |-  ( ph  ->  ( ( C  x.  2 )  <  ( X  x.  ( E  x.  Z ) )  <->  ( C  /  ( E  x.  Z ) )  < 
( X  /  2
) ) )
4339, 42mpbid 147 1  |-  ( ph  ->  ( C  /  ( E  x.  Z )
)  <  ( X  /  2 ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    e. wcel 2167   class class class wbr 4034  (class class class)co 5925    + caddc 7901    x. cmul 7903    < clt 8080    / cdiv 8718   NNcn 9009   2c2 9060   RR+crp 9747
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4152  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-cnex 7989  ax-resscn 7990  ax-1cn 7991  ax-1re 7992  ax-icn 7993  ax-addcl 7994  ax-addrcl 7995  ax-mulcl 7996  ax-mulrcl 7997  ax-addcom 7998  ax-mulcom 7999  ax-addass 8000  ax-mulass 8001  ax-distr 8002  ax-i2m1 8003  ax-0lt1 8004  ax-1rid 8005  ax-0id 8006  ax-rnegex 8007  ax-precex 8008  ax-cnre 8009  ax-pre-ltirr 8010  ax-pre-ltwlin 8011  ax-pre-lttrn 8012  ax-pre-apti 8013  ax-pre-ltadd 8014  ax-pre-mulgt0 8015  ax-pre-mulext 8016
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-br 4035  df-opab 4096  df-id 4329  df-po 4332  df-iso 4333  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-iota 5220  df-fun 5261  df-fv 5267  df-riota 5880  df-ov 5928  df-oprab 5929  df-mpo 5930  df-pnf 8082  df-mnf 8083  df-xr 8084  df-ltxr 8085  df-le 8086  df-sub 8218  df-neg 8219  df-reap 8621  df-ap 8628  df-div 8719  df-inn 9010  df-2 9068  df-rp 9748
This theorem is referenced by:  cvg1nlemres  11169
  Copyright terms: Public domain W3C validator