![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > cvg1nlemcxze | Unicode version |
Description: Lemma for cvg1n 11130. Rearranging an expression related to the rate of convergence. (Contributed by Jim Kingdon, 6-Aug-2021.) |
Ref | Expression |
---|---|
cvg1nlemcxze.c |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
cvg1nlemcxze.x |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
cvg1nlemcxze.z |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
cvg1nlemcxze.e |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
cvg1nlemcxze.a |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
cvg1nlemcxze.1 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
cvg1nlemcxze |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cvg1nlemcxze.c |
. . . . . . . 8
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | 1 | rpcnd 9764 |
. . . . . . 7
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
3 | 2cnd 9055 |
. . . . . . 7
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
4 | cvg1nlemcxze.x |
. . . . . . . 8
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
5 | 4 | rpcnd 9764 |
. . . . . . 7
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
6 | 4 | rpap0d 9768 |
. . . . . . 7
![]() ![]() ![]() ![]() ![]() ![]() ![]() |
7 | 2, 3, 5, 6 | div23apd 8847 |
. . . . . 6
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
8 | 2rp 9724 |
. . . . . . . . . . . . 13
![]() ![]() ![]() ![]() | |
9 | 8 | a1i 9 |
. . . . . . . . . . . 12
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
10 | 1, 9 | rpmulcld 9779 |
. . . . . . . . . . 11
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
11 | 10, 4 | rpdivcld 9780 |
. . . . . . . . . 10
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
12 | cvg1nlemcxze.z |
. . . . . . . . . . 11
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
13 | 12 | nnrpd 9760 |
. . . . . . . . . 10
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
14 | 11, 13 | rpdivcld 9780 |
. . . . . . . . 9
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
15 | 14 | rpred 9762 |
. . . . . . . 8
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
16 | cvg1nlemcxze.a |
. . . . . . . . . 10
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
17 | 16 | nnred 8995 |
. . . . . . . . 9
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
18 | 15, 17 | readdcld 8049 |
. . . . . . . 8
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
19 | cvg1nlemcxze.e |
. . . . . . . . 9
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
20 | 19 | nnred 8995 |
. . . . . . . 8
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
21 | 16 | nnrpd 9760 |
. . . . . . . . 9
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
22 | 15, 21 | ltaddrpd 9796 |
. . . . . . . 8
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
23 | cvg1nlemcxze.1 |
. . . . . . . 8
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
24 | 15, 18, 20, 22, 23 | lttrd 8145 |
. . . . . . 7
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
25 | 11 | rpred 9762 |
. . . . . . . 8
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
26 | 25, 20, 13 | ltdivmul2d 9815 |
. . . . . . 7
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
27 | 24, 26 | mpbid 147 |
. . . . . 6
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
28 | 7, 27 | eqbrtrrd 4053 |
. . . . 5
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
29 | 1 | rpred 9762 |
. . . . . . 7
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
30 | 29, 4 | rerpdivcld 9794 |
. . . . . 6
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
31 | 19, 12 | nnmulcld 9031 |
. . . . . . 7
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
32 | 31 | nnred 8995 |
. . . . . 6
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
33 | 30, 32, 9 | ltmuldivd 9810 |
. . . . 5
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
34 | 28, 33 | mpbid 147 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
35 | 29, 9, 32, 4 | lt2mul2divd 9831 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
36 | 34, 35 | mpbird 167 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
37 | 31 | nncnd 8996 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
38 | 37, 5 | mulcomd 8041 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
39 | 36, 38 | breqtrd 4055 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
40 | 4 | rpred 9762 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
41 | 31 | nnrpd 9760 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
42 | 29, 9, 40, 41 | lt2mul2divd 9831 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
43 | 39, 42 | mpbid 147 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-sep 4147 ax-pow 4203 ax-pr 4238 ax-un 4464 ax-setind 4569 ax-cnex 7963 ax-resscn 7964 ax-1cn 7965 ax-1re 7966 ax-icn 7967 ax-addcl 7968 ax-addrcl 7969 ax-mulcl 7970 ax-mulrcl 7971 ax-addcom 7972 ax-mulcom 7973 ax-addass 7974 ax-mulass 7975 ax-distr 7976 ax-i2m1 7977 ax-0lt1 7978 ax-1rid 7979 ax-0id 7980 ax-rnegex 7981 ax-precex 7982 ax-cnre 7983 ax-pre-ltirr 7984 ax-pre-ltwlin 7985 ax-pre-lttrn 7986 ax-pre-apti 7987 ax-pre-ltadd 7988 ax-pre-mulgt0 7989 ax-pre-mulext 7990 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-nel 2460 df-ral 2477 df-rex 2478 df-reu 2479 df-rmo 2480 df-rab 2481 df-v 2762 df-sbc 2986 df-dif 3155 df-un 3157 df-in 3159 df-ss 3166 df-pw 3603 df-sn 3624 df-pr 3625 df-op 3627 df-uni 3836 df-int 3871 df-br 4030 df-opab 4091 df-id 4324 df-po 4327 df-iso 4328 df-xp 4665 df-rel 4666 df-cnv 4667 df-co 4668 df-dm 4669 df-iota 5215 df-fun 5256 df-fv 5262 df-riota 5873 df-ov 5921 df-oprab 5922 df-mpo 5923 df-pnf 8056 df-mnf 8057 df-xr 8058 df-ltxr 8059 df-le 8060 df-sub 8192 df-neg 8193 df-reap 8594 df-ap 8601 df-div 8692 df-inn 8983 df-2 9041 df-rp 9720 |
This theorem is referenced by: cvg1nlemres 11129 |
Copyright terms: Public domain | W3C validator |