ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cvg1nlemcxze Unicode version

Theorem cvg1nlemcxze 10946
Description: Lemma for cvg1n 10950. Rearranging an expression related to the rate of convergence. (Contributed by Jim Kingdon, 6-Aug-2021.)
Hypotheses
Ref Expression
cvg1nlemcxze.c  |-  ( ph  ->  C  e.  RR+ )
cvg1nlemcxze.x  |-  ( ph  ->  X  e.  RR+ )
cvg1nlemcxze.z  |-  ( ph  ->  Z  e.  NN )
cvg1nlemcxze.e  |-  ( ph  ->  E  e.  NN )
cvg1nlemcxze.a  |-  ( ph  ->  A  e.  NN )
cvg1nlemcxze.1  |-  ( ph  ->  ( ( ( ( C  x.  2 )  /  X )  /  Z )  +  A
)  <  E )
Assertion
Ref Expression
cvg1nlemcxze  |-  ( ph  ->  ( C  /  ( E  x.  Z )
)  <  ( X  /  2 ) )

Proof of Theorem cvg1nlemcxze
StepHypRef Expression
1 cvg1nlemcxze.c . . . . . . . 8  |-  ( ph  ->  C  e.  RR+ )
21rpcnd 9655 . . . . . . 7  |-  ( ph  ->  C  e.  CC )
3 2cnd 8951 . . . . . . 7  |-  ( ph  ->  2  e.  CC )
4 cvg1nlemcxze.x . . . . . . . 8  |-  ( ph  ->  X  e.  RR+ )
54rpcnd 9655 . . . . . . 7  |-  ( ph  ->  X  e.  CC )
64rpap0d 9659 . . . . . . 7  |-  ( ph  ->  X #  0 )
72, 3, 5, 6div23apd 8745 . . . . . 6  |-  ( ph  ->  ( ( C  x.  2 )  /  X
)  =  ( ( C  /  X )  x.  2 ) )
8 2rp 9615 . . . . . . . . . . . . 13  |-  2  e.  RR+
98a1i 9 . . . . . . . . . . . 12  |-  ( ph  ->  2  e.  RR+ )
101, 9rpmulcld 9670 . . . . . . . . . . 11  |-  ( ph  ->  ( C  x.  2 )  e.  RR+ )
1110, 4rpdivcld 9671 . . . . . . . . . 10  |-  ( ph  ->  ( ( C  x.  2 )  /  X
)  e.  RR+ )
12 cvg1nlemcxze.z . . . . . . . . . . 11  |-  ( ph  ->  Z  e.  NN )
1312nnrpd 9651 . . . . . . . . . 10  |-  ( ph  ->  Z  e.  RR+ )
1411, 13rpdivcld 9671 . . . . . . . . 9  |-  ( ph  ->  ( ( ( C  x.  2 )  /  X )  /  Z
)  e.  RR+ )
1514rpred 9653 . . . . . . . 8  |-  ( ph  ->  ( ( ( C  x.  2 )  /  X )  /  Z
)  e.  RR )
16 cvg1nlemcxze.a . . . . . . . . . 10  |-  ( ph  ->  A  e.  NN )
1716nnred 8891 . . . . . . . . 9  |-  ( ph  ->  A  e.  RR )
1815, 17readdcld 7949 . . . . . . . 8  |-  ( ph  ->  ( ( ( ( C  x.  2 )  /  X )  /  Z )  +  A
)  e.  RR )
19 cvg1nlemcxze.e . . . . . . . . 9  |-  ( ph  ->  E  e.  NN )
2019nnred 8891 . . . . . . . 8  |-  ( ph  ->  E  e.  RR )
2116nnrpd 9651 . . . . . . . . 9  |-  ( ph  ->  A  e.  RR+ )
2215, 21ltaddrpd 9687 . . . . . . . 8  |-  ( ph  ->  ( ( ( C  x.  2 )  /  X )  /  Z
)  <  ( (
( ( C  x.  2 )  /  X
)  /  Z )  +  A ) )
23 cvg1nlemcxze.1 . . . . . . . 8  |-  ( ph  ->  ( ( ( ( C  x.  2 )  /  X )  /  Z )  +  A
)  <  E )
2415, 18, 20, 22, 23lttrd 8045 . . . . . . 7  |-  ( ph  ->  ( ( ( C  x.  2 )  /  X )  /  Z
)  <  E )
2511rpred 9653 . . . . . . . 8  |-  ( ph  ->  ( ( C  x.  2 )  /  X
)  e.  RR )
2625, 20, 13ltdivmul2d 9706 . . . . . . 7  |-  ( ph  ->  ( ( ( ( C  x.  2 )  /  X )  /  Z )  <  E  <->  ( ( C  x.  2 )  /  X )  <  ( E  x.  Z ) ) )
2724, 26mpbid 146 . . . . . 6  |-  ( ph  ->  ( ( C  x.  2 )  /  X
)  <  ( E  x.  Z ) )
287, 27eqbrtrrd 4013 . . . . 5  |-  ( ph  ->  ( ( C  /  X )  x.  2 )  <  ( E  x.  Z ) )
291rpred 9653 . . . . . . 7  |-  ( ph  ->  C  e.  RR )
3029, 4rerpdivcld 9685 . . . . . 6  |-  ( ph  ->  ( C  /  X
)  e.  RR )
3119, 12nnmulcld 8927 . . . . . . 7  |-  ( ph  ->  ( E  x.  Z
)  e.  NN )
3231nnred 8891 . . . . . 6  |-  ( ph  ->  ( E  x.  Z
)  e.  RR )
3330, 32, 9ltmuldivd 9701 . . . . 5  |-  ( ph  ->  ( ( ( C  /  X )  x.  2 )  <  ( E  x.  Z )  <->  ( C  /  X )  <  ( ( E  x.  Z )  / 
2 ) ) )
3428, 33mpbid 146 . . . 4  |-  ( ph  ->  ( C  /  X
)  <  ( ( E  x.  Z )  /  2 ) )
3529, 9, 32, 4lt2mul2divd 9722 . . . 4  |-  ( ph  ->  ( ( C  x.  2 )  <  (
( E  x.  Z
)  x.  X )  <-> 
( C  /  X
)  <  ( ( E  x.  Z )  /  2 ) ) )
3634, 35mpbird 166 . . 3  |-  ( ph  ->  ( C  x.  2 )  <  ( ( E  x.  Z )  x.  X ) )
3731nncnd 8892 . . . 4  |-  ( ph  ->  ( E  x.  Z
)  e.  CC )
3837, 5mulcomd 7941 . . 3  |-  ( ph  ->  ( ( E  x.  Z )  x.  X
)  =  ( X  x.  ( E  x.  Z ) ) )
3936, 38breqtrd 4015 . 2  |-  ( ph  ->  ( C  x.  2 )  <  ( X  x.  ( E  x.  Z ) ) )
404rpred 9653 . . 3  |-  ( ph  ->  X  e.  RR )
4131nnrpd 9651 . . 3  |-  ( ph  ->  ( E  x.  Z
)  e.  RR+ )
4229, 9, 40, 41lt2mul2divd 9722 . 2  |-  ( ph  ->  ( ( C  x.  2 )  <  ( X  x.  ( E  x.  Z ) )  <->  ( C  /  ( E  x.  Z ) )  < 
( X  /  2
) ) )
4339, 42mpbid 146 1  |-  ( ph  ->  ( C  /  ( E  x.  Z )
)  <  ( X  /  2 ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    e. wcel 2141   class class class wbr 3989  (class class class)co 5853    + caddc 7777    x. cmul 7779    < clt 7954    / cdiv 8589   NNcn 8878   2c2 8929   RR+crp 9610
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521  ax-cnex 7865  ax-resscn 7866  ax-1cn 7867  ax-1re 7868  ax-icn 7869  ax-addcl 7870  ax-addrcl 7871  ax-mulcl 7872  ax-mulrcl 7873  ax-addcom 7874  ax-mulcom 7875  ax-addass 7876  ax-mulass 7877  ax-distr 7878  ax-i2m1 7879  ax-0lt1 7880  ax-1rid 7881  ax-0id 7882  ax-rnegex 7883  ax-precex 7884  ax-cnre 7885  ax-pre-ltirr 7886  ax-pre-ltwlin 7887  ax-pre-lttrn 7888  ax-pre-apti 7889  ax-pre-ltadd 7890  ax-pre-mulgt0 7891  ax-pre-mulext 7892
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-nel 2436  df-ral 2453  df-rex 2454  df-reu 2455  df-rmo 2456  df-rab 2457  df-v 2732  df-sbc 2956  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-int 3832  df-br 3990  df-opab 4051  df-id 4278  df-po 4281  df-iso 4282  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-iota 5160  df-fun 5200  df-fv 5206  df-riota 5809  df-ov 5856  df-oprab 5857  df-mpo 5858  df-pnf 7956  df-mnf 7957  df-xr 7958  df-ltxr 7959  df-le 7960  df-sub 8092  df-neg 8093  df-reap 8494  df-ap 8501  df-div 8590  df-inn 8879  df-2 8937  df-rp 9611
This theorem is referenced by:  cvg1nlemres  10949
  Copyright terms: Public domain W3C validator