ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cvg1nlemcxze Unicode version

Theorem cvg1nlemcxze 10959
Description: Lemma for cvg1n 10963. Rearranging an expression related to the rate of convergence. (Contributed by Jim Kingdon, 6-Aug-2021.)
Hypotheses
Ref Expression
cvg1nlemcxze.c  |-  ( ph  ->  C  e.  RR+ )
cvg1nlemcxze.x  |-  ( ph  ->  X  e.  RR+ )
cvg1nlemcxze.z  |-  ( ph  ->  Z  e.  NN )
cvg1nlemcxze.e  |-  ( ph  ->  E  e.  NN )
cvg1nlemcxze.a  |-  ( ph  ->  A  e.  NN )
cvg1nlemcxze.1  |-  ( ph  ->  ( ( ( ( C  x.  2 )  /  X )  /  Z )  +  A
)  <  E )
Assertion
Ref Expression
cvg1nlemcxze  |-  ( ph  ->  ( C  /  ( E  x.  Z )
)  <  ( X  /  2 ) )

Proof of Theorem cvg1nlemcxze
StepHypRef Expression
1 cvg1nlemcxze.c . . . . . . . 8  |-  ( ph  ->  C  e.  RR+ )
21rpcnd 9669 . . . . . . 7  |-  ( ph  ->  C  e.  CC )
3 2cnd 8965 . . . . . . 7  |-  ( ph  ->  2  e.  CC )
4 cvg1nlemcxze.x . . . . . . . 8  |-  ( ph  ->  X  e.  RR+ )
54rpcnd 9669 . . . . . . 7  |-  ( ph  ->  X  e.  CC )
64rpap0d 9673 . . . . . . 7  |-  ( ph  ->  X #  0 )
72, 3, 5, 6div23apd 8758 . . . . . 6  |-  ( ph  ->  ( ( C  x.  2 )  /  X
)  =  ( ( C  /  X )  x.  2 ) )
8 2rp 9629 . . . . . . . . . . . . 13  |-  2  e.  RR+
98a1i 9 . . . . . . . . . . . 12  |-  ( ph  ->  2  e.  RR+ )
101, 9rpmulcld 9684 . . . . . . . . . . 11  |-  ( ph  ->  ( C  x.  2 )  e.  RR+ )
1110, 4rpdivcld 9685 . . . . . . . . . 10  |-  ( ph  ->  ( ( C  x.  2 )  /  X
)  e.  RR+ )
12 cvg1nlemcxze.z . . . . . . . . . . 11  |-  ( ph  ->  Z  e.  NN )
1312nnrpd 9665 . . . . . . . . . 10  |-  ( ph  ->  Z  e.  RR+ )
1411, 13rpdivcld 9685 . . . . . . . . 9  |-  ( ph  ->  ( ( ( C  x.  2 )  /  X )  /  Z
)  e.  RR+ )
1514rpred 9667 . . . . . . . 8  |-  ( ph  ->  ( ( ( C  x.  2 )  /  X )  /  Z
)  e.  RR )
16 cvg1nlemcxze.a . . . . . . . . . 10  |-  ( ph  ->  A  e.  NN )
1716nnred 8905 . . . . . . . . 9  |-  ( ph  ->  A  e.  RR )
1815, 17readdcld 7961 . . . . . . . 8  |-  ( ph  ->  ( ( ( ( C  x.  2 )  /  X )  /  Z )  +  A
)  e.  RR )
19 cvg1nlemcxze.e . . . . . . . . 9  |-  ( ph  ->  E  e.  NN )
2019nnred 8905 . . . . . . . 8  |-  ( ph  ->  E  e.  RR )
2116nnrpd 9665 . . . . . . . . 9  |-  ( ph  ->  A  e.  RR+ )
2215, 21ltaddrpd 9701 . . . . . . . 8  |-  ( ph  ->  ( ( ( C  x.  2 )  /  X )  /  Z
)  <  ( (
( ( C  x.  2 )  /  X
)  /  Z )  +  A ) )
23 cvg1nlemcxze.1 . . . . . . . 8  |-  ( ph  ->  ( ( ( ( C  x.  2 )  /  X )  /  Z )  +  A
)  <  E )
2415, 18, 20, 22, 23lttrd 8057 . . . . . . 7  |-  ( ph  ->  ( ( ( C  x.  2 )  /  X )  /  Z
)  <  E )
2511rpred 9667 . . . . . . . 8  |-  ( ph  ->  ( ( C  x.  2 )  /  X
)  e.  RR )
2625, 20, 13ltdivmul2d 9720 . . . . . . 7  |-  ( ph  ->  ( ( ( ( C  x.  2 )  /  X )  /  Z )  <  E  <->  ( ( C  x.  2 )  /  X )  <  ( E  x.  Z ) ) )
2724, 26mpbid 147 . . . . . 6  |-  ( ph  ->  ( ( C  x.  2 )  /  X
)  <  ( E  x.  Z ) )
287, 27eqbrtrrd 4022 . . . . 5  |-  ( ph  ->  ( ( C  /  X )  x.  2 )  <  ( E  x.  Z ) )
291rpred 9667 . . . . . . 7  |-  ( ph  ->  C  e.  RR )
3029, 4rerpdivcld 9699 . . . . . 6  |-  ( ph  ->  ( C  /  X
)  e.  RR )
3119, 12nnmulcld 8941 . . . . . . 7  |-  ( ph  ->  ( E  x.  Z
)  e.  NN )
3231nnred 8905 . . . . . 6  |-  ( ph  ->  ( E  x.  Z
)  e.  RR )
3330, 32, 9ltmuldivd 9715 . . . . 5  |-  ( ph  ->  ( ( ( C  /  X )  x.  2 )  <  ( E  x.  Z )  <->  ( C  /  X )  <  ( ( E  x.  Z )  / 
2 ) ) )
3428, 33mpbid 147 . . . 4  |-  ( ph  ->  ( C  /  X
)  <  ( ( E  x.  Z )  /  2 ) )
3529, 9, 32, 4lt2mul2divd 9736 . . . 4  |-  ( ph  ->  ( ( C  x.  2 )  <  (
( E  x.  Z
)  x.  X )  <-> 
( C  /  X
)  <  ( ( E  x.  Z )  /  2 ) ) )
3634, 35mpbird 167 . . 3  |-  ( ph  ->  ( C  x.  2 )  <  ( ( E  x.  Z )  x.  X ) )
3731nncnd 8906 . . . 4  |-  ( ph  ->  ( E  x.  Z
)  e.  CC )
3837, 5mulcomd 7953 . . 3  |-  ( ph  ->  ( ( E  x.  Z )  x.  X
)  =  ( X  x.  ( E  x.  Z ) ) )
3936, 38breqtrd 4024 . 2  |-  ( ph  ->  ( C  x.  2 )  <  ( X  x.  ( E  x.  Z ) ) )
404rpred 9667 . . 3  |-  ( ph  ->  X  e.  RR )
4131nnrpd 9665 . . 3  |-  ( ph  ->  ( E  x.  Z
)  e.  RR+ )
4229, 9, 40, 41lt2mul2divd 9736 . 2  |-  ( ph  ->  ( ( C  x.  2 )  <  ( X  x.  ( E  x.  Z ) )  <->  ( C  /  ( E  x.  Z ) )  < 
( X  /  2
) ) )
4339, 42mpbid 147 1  |-  ( ph  ->  ( C  /  ( E  x.  Z )
)  <  ( X  /  2 ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    e. wcel 2146   class class class wbr 3998  (class class class)co 5865    + caddc 7789    x. cmul 7791    < clt 7966    / cdiv 8602   NNcn 8892   2c2 8943   RR+crp 9624
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1445  ax-7 1446  ax-gen 1447  ax-ie1 1491  ax-ie2 1492  ax-8 1502  ax-10 1503  ax-11 1504  ax-i12 1505  ax-bndl 1507  ax-4 1508  ax-17 1524  ax-i9 1528  ax-ial 1532  ax-i5r 1533  ax-13 2148  ax-14 2149  ax-ext 2157  ax-sep 4116  ax-pow 4169  ax-pr 4203  ax-un 4427  ax-setind 4530  ax-cnex 7877  ax-resscn 7878  ax-1cn 7879  ax-1re 7880  ax-icn 7881  ax-addcl 7882  ax-addrcl 7883  ax-mulcl 7884  ax-mulrcl 7885  ax-addcom 7886  ax-mulcom 7887  ax-addass 7888  ax-mulass 7889  ax-distr 7890  ax-i2m1 7891  ax-0lt1 7892  ax-1rid 7893  ax-0id 7894  ax-rnegex 7895  ax-precex 7896  ax-cnre 7897  ax-pre-ltirr 7898  ax-pre-ltwlin 7899  ax-pre-lttrn 7900  ax-pre-apti 7901  ax-pre-ltadd 7902  ax-pre-mulgt0 7903  ax-pre-mulext 7904
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1459  df-sb 1761  df-eu 2027  df-mo 2028  df-clab 2162  df-cleq 2168  df-clel 2171  df-nfc 2306  df-ne 2346  df-nel 2441  df-ral 2458  df-rex 2459  df-reu 2460  df-rmo 2461  df-rab 2462  df-v 2737  df-sbc 2961  df-dif 3129  df-un 3131  df-in 3133  df-ss 3140  df-pw 3574  df-sn 3595  df-pr 3596  df-op 3598  df-uni 3806  df-int 3841  df-br 3999  df-opab 4060  df-id 4287  df-po 4290  df-iso 4291  df-xp 4626  df-rel 4627  df-cnv 4628  df-co 4629  df-dm 4630  df-iota 5170  df-fun 5210  df-fv 5216  df-riota 5821  df-ov 5868  df-oprab 5869  df-mpo 5870  df-pnf 7968  df-mnf 7969  df-xr 7970  df-ltxr 7971  df-le 7972  df-sub 8104  df-neg 8105  df-reap 8506  df-ap 8513  df-div 8603  df-inn 8893  df-2 8951  df-rp 9625
This theorem is referenced by:  cvg1nlemres  10962
  Copyright terms: Public domain W3C validator