ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cvg1n Unicode version

Theorem cvg1n 10726
Description: Convergence of real sequences.

This is a version of caucvgre 10721 with a constant multiplier  C on the rate of convergence. That is, all terms after the nth term must be within  C  /  n of the nth term.

(Contributed by Jim Kingdon, 1-Aug-2021.)

Hypotheses
Ref Expression
cvg1n.f  |-  ( ph  ->  F : NN --> RR )
cvg1n.c  |-  ( ph  ->  C  e.  RR+ )
cvg1n.cau  |-  ( ph  ->  A. n  e.  NN  A. k  e.  ( ZZ>= `  n ) ( ( F `  n )  <  ( ( F `
 k )  +  ( C  /  n
) )  /\  ( F `  k )  <  ( ( F `  n )  +  ( C  /  n ) ) ) )
Assertion
Ref Expression
cvg1n  |-  ( ph  ->  E. y  e.  RR  A. x  e.  RR+  E. j  e.  NN  A. i  e.  ( ZZ>= `  j )
( ( F `  i )  <  (
y  +  x )  /\  y  <  (
( F `  i
)  +  x ) ) )
Distinct variable groups:    C, k, n    C, i, j, x, y   
x, F, y    k, F, n    i, F, j    ph, k, n, j    ph, i, x, y, j    j, n   
y, k, j, i

Proof of Theorem cvg1n
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 cvg1n.c . . . 4  |-  ( ph  ->  C  e.  RR+ )
21rpred 9451 . . 3  |-  ( ph  ->  C  e.  RR )
3 arch 8942 . . 3  |-  ( C  e.  RR  ->  E. z  e.  NN  C  <  z
)
42, 3syl 14 . 2  |-  ( ph  ->  E. z  e.  NN  C  <  z )
5 cvg1n.f . . . 4  |-  ( ph  ->  F : NN --> RR )
65adantr 274 . . 3  |-  ( (
ph  /\  ( z  e.  NN  /\  C  < 
z ) )  ->  F : NN --> RR )
71adantr 274 . . 3  |-  ( (
ph  /\  ( z  e.  NN  /\  C  < 
z ) )  ->  C  e.  RR+ )
8 cvg1n.cau . . . 4  |-  ( ph  ->  A. n  e.  NN  A. k  e.  ( ZZ>= `  n ) ( ( F `  n )  <  ( ( F `
 k )  +  ( C  /  n
) )  /\  ( F `  k )  <  ( ( F `  n )  +  ( C  /  n ) ) ) )
98adantr 274 . . 3  |-  ( (
ph  /\  ( z  e.  NN  /\  C  < 
z ) )  ->  A. n  e.  NN  A. k  e.  ( ZZ>= `  n ) ( ( F `  n )  <  ( ( F `
 k )  +  ( C  /  n
) )  /\  ( F `  k )  <  ( ( F `  n )  +  ( C  /  n ) ) ) )
10 eqid 2117 . . 3  |-  ( j  e.  NN  |->  ( F `
 ( j  x.  z ) ) )  =  ( j  e.  NN  |->  ( F `  ( j  x.  z
) ) )
11 simprl 505 . . 3  |-  ( (
ph  /\  ( z  e.  NN  /\  C  < 
z ) )  -> 
z  e.  NN )
12 simprr 506 . . 3  |-  ( (
ph  /\  ( z  e.  NN  /\  C  < 
z ) )  ->  C  <  z )
136, 7, 9, 10, 11, 12cvg1nlemres 10725 . 2  |-  ( (
ph  /\  ( z  e.  NN  /\  C  < 
z ) )  ->  E. y  e.  RR  A. x  e.  RR+  E. j  e.  NN  A. i  e.  ( ZZ>= `  j )
( ( F `  i )  <  (
y  +  x )  /\  y  <  (
( F `  i
)  +  x ) ) )
144, 13rexlimddv 2531 1  |-  ( ph  ->  E. y  e.  RR  A. x  e.  RR+  E. j  e.  NN  A. i  e.  ( ZZ>= `  j )
( ( F `  i )  <  (
y  +  x )  /\  y  <  (
( F `  i
)  +  x ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    e. wcel 1465   A.wral 2393   E.wrex 2394   class class class wbr 3899    |-> cmpt 3959   -->wf 5089   ` cfv 5093  (class class class)co 5742   RRcr 7587    + caddc 7591    x. cmul 7593    < clt 7768    / cdiv 8400   NNcn 8688   ZZ>=cuz 9294   RR+crp 9409
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 588  ax-in2 589  ax-io 683  ax-5 1408  ax-7 1409  ax-gen 1410  ax-ie1 1454  ax-ie2 1455  ax-8 1467  ax-10 1468  ax-11 1469  ax-i12 1470  ax-bndl 1471  ax-4 1472  ax-13 1476  ax-14 1477  ax-17 1491  ax-i9 1495  ax-ial 1499  ax-i5r 1500  ax-ext 2099  ax-sep 4016  ax-pow 4068  ax-pr 4101  ax-un 4325  ax-setind 4422  ax-cnex 7679  ax-resscn 7680  ax-1cn 7681  ax-1re 7682  ax-icn 7683  ax-addcl 7684  ax-addrcl 7685  ax-mulcl 7686  ax-mulrcl 7687  ax-addcom 7688  ax-mulcom 7689  ax-addass 7690  ax-mulass 7691  ax-distr 7692  ax-i2m1 7693  ax-0lt1 7694  ax-1rid 7695  ax-0id 7696  ax-rnegex 7697  ax-precex 7698  ax-cnre 7699  ax-pre-ltirr 7700  ax-pre-ltwlin 7701  ax-pre-lttrn 7702  ax-pre-apti 7703  ax-pre-ltadd 7704  ax-pre-mulgt0 7705  ax-pre-mulext 7706  ax-arch 7707  ax-caucvg 7708
This theorem depends on definitions:  df-bi 116  df-3or 948  df-3an 949  df-tru 1319  df-fal 1322  df-nf 1422  df-sb 1721  df-eu 1980  df-mo 1981  df-clab 2104  df-cleq 2110  df-clel 2113  df-nfc 2247  df-ne 2286  df-nel 2381  df-ral 2398  df-rex 2399  df-reu 2400  df-rmo 2401  df-rab 2402  df-v 2662  df-sbc 2883  df-dif 3043  df-un 3045  df-in 3047  df-ss 3054  df-pw 3482  df-sn 3503  df-pr 3504  df-op 3506  df-uni 3707  df-int 3742  df-br 3900  df-opab 3960  df-mpt 3961  df-id 4185  df-po 4188  df-iso 4189  df-xp 4515  df-rel 4516  df-cnv 4517  df-co 4518  df-dm 4519  df-rn 4520  df-res 4521  df-ima 4522  df-iota 5058  df-fun 5095  df-fn 5096  df-f 5097  df-fv 5101  df-riota 5698  df-ov 5745  df-oprab 5746  df-mpo 5747  df-pnf 7770  df-mnf 7771  df-xr 7772  df-ltxr 7773  df-le 7774  df-sub 7903  df-neg 7904  df-reap 8305  df-ap 8312  df-div 8401  df-inn 8689  df-2 8747  df-n0 8946  df-z 9023  df-uz 9295  df-rp 9410
This theorem is referenced by:  resqrexlemcvg  10759  climrecvg1n  11085
  Copyright terms: Public domain W3C validator