ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cvg1n Unicode version

Theorem cvg1n 11497
Description: Convergence of real sequences.

This is a version of caucvgre 11492 with a constant multiplier  C on the rate of convergence. That is, all terms after the nth term must be within  C  /  n of the nth term.

(Contributed by Jim Kingdon, 1-Aug-2021.)

Hypotheses
Ref Expression
cvg1n.f  |-  ( ph  ->  F : NN --> RR )
cvg1n.c  |-  ( ph  ->  C  e.  RR+ )
cvg1n.cau  |-  ( ph  ->  A. n  e.  NN  A. k  e.  ( ZZ>= `  n ) ( ( F `  n )  <  ( ( F `
 k )  +  ( C  /  n
) )  /\  ( F `  k )  <  ( ( F `  n )  +  ( C  /  n ) ) ) )
Assertion
Ref Expression
cvg1n  |-  ( ph  ->  E. y  e.  RR  A. x  e.  RR+  E. j  e.  NN  A. i  e.  ( ZZ>= `  j )
( ( F `  i )  <  (
y  +  x )  /\  y  <  (
( F `  i
)  +  x ) ) )
Distinct variable groups:    C, k, n    C, i, j, x, y   
x, F, y    k, F, n    i, F, j    ph, k, n, j    ph, i, x, y, j    j, n   
y, k, j, i

Proof of Theorem cvg1n
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 cvg1n.c . . . 4  |-  ( ph  ->  C  e.  RR+ )
21rpred 9892 . . 3  |-  ( ph  ->  C  e.  RR )
3 arch 9366 . . 3  |-  ( C  e.  RR  ->  E. z  e.  NN  C  <  z
)
42, 3syl 14 . 2  |-  ( ph  ->  E. z  e.  NN  C  <  z )
5 cvg1n.f . . . 4  |-  ( ph  ->  F : NN --> RR )
65adantr 276 . . 3  |-  ( (
ph  /\  ( z  e.  NN  /\  C  < 
z ) )  ->  F : NN --> RR )
71adantr 276 . . 3  |-  ( (
ph  /\  ( z  e.  NN  /\  C  < 
z ) )  ->  C  e.  RR+ )
8 cvg1n.cau . . . 4  |-  ( ph  ->  A. n  e.  NN  A. k  e.  ( ZZ>= `  n ) ( ( F `  n )  <  ( ( F `
 k )  +  ( C  /  n
) )  /\  ( F `  k )  <  ( ( F `  n )  +  ( C  /  n ) ) ) )
98adantr 276 . . 3  |-  ( (
ph  /\  ( z  e.  NN  /\  C  < 
z ) )  ->  A. n  e.  NN  A. k  e.  ( ZZ>= `  n ) ( ( F `  n )  <  ( ( F `
 k )  +  ( C  /  n
) )  /\  ( F `  k )  <  ( ( F `  n )  +  ( C  /  n ) ) ) )
10 eqid 2229 . . 3  |-  ( j  e.  NN  |->  ( F `
 ( j  x.  z ) ) )  =  ( j  e.  NN  |->  ( F `  ( j  x.  z
) ) )
11 simprl 529 . . 3  |-  ( (
ph  /\  ( z  e.  NN  /\  C  < 
z ) )  -> 
z  e.  NN )
12 simprr 531 . . 3  |-  ( (
ph  /\  ( z  e.  NN  /\  C  < 
z ) )  ->  C  <  z )
136, 7, 9, 10, 11, 12cvg1nlemres 11496 . 2  |-  ( (
ph  /\  ( z  e.  NN  /\  C  < 
z ) )  ->  E. y  e.  RR  A. x  e.  RR+  E. j  e.  NN  A. i  e.  ( ZZ>= `  j )
( ( F `  i )  <  (
y  +  x )  /\  y  <  (
( F `  i
)  +  x ) ) )
144, 13rexlimddv 2653 1  |-  ( ph  ->  E. y  e.  RR  A. x  e.  RR+  E. j  e.  NN  A. i  e.  ( ZZ>= `  j )
( ( F `  i )  <  (
y  +  x )  /\  y  <  (
( F `  i
)  +  x ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    e. wcel 2200   A.wral 2508   E.wrex 2509   class class class wbr 4083    |-> cmpt 4145   -->wf 5314   ` cfv 5318  (class class class)co 6001   RRcr 7998    + caddc 8002    x. cmul 8004    < clt 8181    / cdiv 8819   NNcn 9110   ZZ>=cuz 9722   RR+crp 9849
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-cnex 8090  ax-resscn 8091  ax-1cn 8092  ax-1re 8093  ax-icn 8094  ax-addcl 8095  ax-addrcl 8096  ax-mulcl 8097  ax-mulrcl 8098  ax-addcom 8099  ax-mulcom 8100  ax-addass 8101  ax-mulass 8102  ax-distr 8103  ax-i2m1 8104  ax-0lt1 8105  ax-1rid 8106  ax-0id 8107  ax-rnegex 8108  ax-precex 8109  ax-cnre 8110  ax-pre-ltirr 8111  ax-pre-ltwlin 8112  ax-pre-lttrn 8113  ax-pre-apti 8114  ax-pre-ltadd 8115  ax-pre-mulgt0 8116  ax-pre-mulext 8117  ax-arch 8118  ax-caucvg 8119
This theorem depends on definitions:  df-bi 117  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-br 4084  df-opab 4146  df-mpt 4147  df-id 4384  df-po 4387  df-iso 4388  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-fv 5326  df-riota 5954  df-ov 6004  df-oprab 6005  df-mpo 6006  df-pnf 8183  df-mnf 8184  df-xr 8185  df-ltxr 8186  df-le 8187  df-sub 8319  df-neg 8320  df-reap 8722  df-ap 8729  df-div 8820  df-inn 9111  df-2 9169  df-n0 9370  df-z 9447  df-uz 9723  df-rp 9850
This theorem is referenced by:  resqrexlemcvg  11530  climrecvg1n  11859
  Copyright terms: Public domain W3C validator