ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cvg1n Unicode version

Theorem cvg1n 10950
Description: Convergence of real sequences.

This is a version of caucvgre 10945 with a constant multiplier  C on the rate of convergence. That is, all terms after the nth term must be within  C  /  n of the nth term.

(Contributed by Jim Kingdon, 1-Aug-2021.)

Hypotheses
Ref Expression
cvg1n.f  |-  ( ph  ->  F : NN --> RR )
cvg1n.c  |-  ( ph  ->  C  e.  RR+ )
cvg1n.cau  |-  ( ph  ->  A. n  e.  NN  A. k  e.  ( ZZ>= `  n ) ( ( F `  n )  <  ( ( F `
 k )  +  ( C  /  n
) )  /\  ( F `  k )  <  ( ( F `  n )  +  ( C  /  n ) ) ) )
Assertion
Ref Expression
cvg1n  |-  ( ph  ->  E. y  e.  RR  A. x  e.  RR+  E. j  e.  NN  A. i  e.  ( ZZ>= `  j )
( ( F `  i )  <  (
y  +  x )  /\  y  <  (
( F `  i
)  +  x ) ) )
Distinct variable groups:    C, k, n    C, i, j, x, y   
x, F, y    k, F, n    i, F, j    ph, k, n, j    ph, i, x, y, j    j, n   
y, k, j, i

Proof of Theorem cvg1n
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 cvg1n.c . . . 4  |-  ( ph  ->  C  e.  RR+ )
21rpred 9653 . . 3  |-  ( ph  ->  C  e.  RR )
3 arch 9132 . . 3  |-  ( C  e.  RR  ->  E. z  e.  NN  C  <  z
)
42, 3syl 14 . 2  |-  ( ph  ->  E. z  e.  NN  C  <  z )
5 cvg1n.f . . . 4  |-  ( ph  ->  F : NN --> RR )
65adantr 274 . . 3  |-  ( (
ph  /\  ( z  e.  NN  /\  C  < 
z ) )  ->  F : NN --> RR )
71adantr 274 . . 3  |-  ( (
ph  /\  ( z  e.  NN  /\  C  < 
z ) )  ->  C  e.  RR+ )
8 cvg1n.cau . . . 4  |-  ( ph  ->  A. n  e.  NN  A. k  e.  ( ZZ>= `  n ) ( ( F `  n )  <  ( ( F `
 k )  +  ( C  /  n
) )  /\  ( F `  k )  <  ( ( F `  n )  +  ( C  /  n ) ) ) )
98adantr 274 . . 3  |-  ( (
ph  /\  ( z  e.  NN  /\  C  < 
z ) )  ->  A. n  e.  NN  A. k  e.  ( ZZ>= `  n ) ( ( F `  n )  <  ( ( F `
 k )  +  ( C  /  n
) )  /\  ( F `  k )  <  ( ( F `  n )  +  ( C  /  n ) ) ) )
10 eqid 2170 . . 3  |-  ( j  e.  NN  |->  ( F `
 ( j  x.  z ) ) )  =  ( j  e.  NN  |->  ( F `  ( j  x.  z
) ) )
11 simprl 526 . . 3  |-  ( (
ph  /\  ( z  e.  NN  /\  C  < 
z ) )  -> 
z  e.  NN )
12 simprr 527 . . 3  |-  ( (
ph  /\  ( z  e.  NN  /\  C  < 
z ) )  ->  C  <  z )
136, 7, 9, 10, 11, 12cvg1nlemres 10949 . 2  |-  ( (
ph  /\  ( z  e.  NN  /\  C  < 
z ) )  ->  E. y  e.  RR  A. x  e.  RR+  E. j  e.  NN  A. i  e.  ( ZZ>= `  j )
( ( F `  i )  <  (
y  +  x )  /\  y  <  (
( F `  i
)  +  x ) ) )
144, 13rexlimddv 2592 1  |-  ( ph  ->  E. y  e.  RR  A. x  e.  RR+  E. j  e.  NN  A. i  e.  ( ZZ>= `  j )
( ( F `  i )  <  (
y  +  x )  /\  y  <  (
( F `  i
)  +  x ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    e. wcel 2141   A.wral 2448   E.wrex 2449   class class class wbr 3989    |-> cmpt 4050   -->wf 5194   ` cfv 5198  (class class class)co 5853   RRcr 7773    + caddc 7777    x. cmul 7779    < clt 7954    / cdiv 8589   NNcn 8878   ZZ>=cuz 9487   RR+crp 9610
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521  ax-cnex 7865  ax-resscn 7866  ax-1cn 7867  ax-1re 7868  ax-icn 7869  ax-addcl 7870  ax-addrcl 7871  ax-mulcl 7872  ax-mulrcl 7873  ax-addcom 7874  ax-mulcom 7875  ax-addass 7876  ax-mulass 7877  ax-distr 7878  ax-i2m1 7879  ax-0lt1 7880  ax-1rid 7881  ax-0id 7882  ax-rnegex 7883  ax-precex 7884  ax-cnre 7885  ax-pre-ltirr 7886  ax-pre-ltwlin 7887  ax-pre-lttrn 7888  ax-pre-apti 7889  ax-pre-ltadd 7890  ax-pre-mulgt0 7891  ax-pre-mulext 7892  ax-arch 7893  ax-caucvg 7894
This theorem depends on definitions:  df-bi 116  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-nel 2436  df-ral 2453  df-rex 2454  df-reu 2455  df-rmo 2456  df-rab 2457  df-v 2732  df-sbc 2956  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-int 3832  df-br 3990  df-opab 4051  df-mpt 4052  df-id 4278  df-po 4281  df-iso 4282  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-fv 5206  df-riota 5809  df-ov 5856  df-oprab 5857  df-mpo 5858  df-pnf 7956  df-mnf 7957  df-xr 7958  df-ltxr 7959  df-le 7960  df-sub 8092  df-neg 8093  df-reap 8494  df-ap 8501  df-div 8590  df-inn 8879  df-2 8937  df-n0 9136  df-z 9213  df-uz 9488  df-rp 9611
This theorem is referenced by:  resqrexlemcvg  10983  climrecvg1n  11311
  Copyright terms: Public domain W3C validator