| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > dedekindicclemloc | Unicode version | ||
| Description: Lemma for dedekindicc 15220. The set L is located. (Contributed by Jim Kingdon, 15-Feb-2024.) |
| Ref | Expression |
|---|---|
| dedekindicc.a |
|
| dedekindicc.b |
|
| dedekindicc.lss |
|
| dedekindicc.uss |
|
| dedekindicc.lm |
|
| dedekindicc.um |
|
| dedekindicc.lr |
|
| dedekindicc.ur |
|
| dedekindicc.disj |
|
| dedekindicc.loc |
|
| Ref | Expression |
|---|---|
| dedekindicclemloc |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | breq2 4063 |
. . . . 5
| |
| 2 | eleq1w 2268 |
. . . . . 6
| |
| 3 | 2 | orbi2d 792 |
. . . . 5
|
| 4 | 1, 3 | imbi12d 234 |
. . . 4
|
| 5 | breq1 4062 |
. . . . . . 7
| |
| 6 | eleq1w 2268 |
. . . . . . . 8
| |
| 7 | 6 | orbi1d 793 |
. . . . . . 7
|
| 8 | 5, 7 | imbi12d 234 |
. . . . . 6
|
| 9 | 8 | ralbidv 2508 |
. . . . 5
|
| 10 | dedekindicc.loc |
. . . . . 6
| |
| 11 | 10 | adantr 276 |
. . . . 5
|
| 12 | simprl 529 |
. . . . 5
| |
| 13 | 9, 11, 12 | rspcdva 2889 |
. . . 4
|
| 14 | simprr 531 |
. . . 4
| |
| 15 | 4, 13, 14 | rspcdva 2889 |
. . 3
|
| 16 | simpr 110 |
. . . . . . 7
| |
| 17 | 5 | rexbidv 2509 |
. . . . . . . . 9
|
| 18 | 6, 17 | bibi12d 235 |
. . . . . . . 8
|
| 19 | dedekindicc.lr |
. . . . . . . . 9
| |
| 20 | 19 | ad2antrr 488 |
. . . . . . . 8
|
| 21 | 12 | adantr 276 |
. . . . . . . 8
|
| 22 | 18, 20, 21 | rspcdva 2889 |
. . . . . . 7
|
| 23 | 16, 22 | mpbid 147 |
. . . . . 6
|
| 24 | breq2 4063 |
. . . . . . 7
| |
| 25 | 24 | cbvrexv 2743 |
. . . . . 6
|
| 26 | 23, 25 | sylib 122 |
. . . . 5
|
| 27 | 26 | ex 115 |
. . . 4
|
| 28 | dedekindicc.a |
. . . . . . 7
| |
| 29 | 28 | ad2antrr 488 |
. . . . . 6
|
| 30 | dedekindicc.b |
. . . . . . 7
| |
| 31 | 30 | ad2antrr 488 |
. . . . . 6
|
| 32 | dedekindicc.lss |
. . . . . . 7
| |
| 33 | 32 | ad2antrr 488 |
. . . . . 6
|
| 34 | dedekindicc.uss |
. . . . . . 7
| |
| 35 | 34 | ad2antrr 488 |
. . . . . 6
|
| 36 | dedekindicc.lm |
. . . . . . 7
| |
| 37 | 36 | ad2antrr 488 |
. . . . . 6
|
| 38 | dedekindicc.um |
. . . . . . 7
| |
| 39 | 38 | ad2antrr 488 |
. . . . . 6
|
| 40 | 19 | ad2antrr 488 |
. . . . . 6
|
| 41 | dedekindicc.ur |
. . . . . . 7
| |
| 42 | 41 | ad2antrr 488 |
. . . . . 6
|
| 43 | dedekindicc.disj |
. . . . . . 7
| |
| 44 | 43 | ad2antrr 488 |
. . . . . 6
|
| 45 | 10 | ad2antrr 488 |
. . . . . 6
|
| 46 | simpr 110 |
. . . . . 6
| |
| 47 | 29, 31, 33, 35, 37, 39, 40, 42, 44, 45, 46 | dedekindicclemuub 15213 |
. . . . 5
|
| 48 | 47 | ex 115 |
. . . 4
|
| 49 | 27, 48 | orim12d 788 |
. . 3
|
| 50 | 15, 49 | syld 45 |
. 2
|
| 51 | 50 | ralrimivva 2590 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2180 ax-14 2181 ax-ext 2189 ax-sep 4178 ax-pow 4234 ax-pr 4269 ax-un 4498 ax-setind 4603 ax-cnex 8051 ax-resscn 8052 ax-pre-ltirr 8072 ax-pre-ltwlin 8073 ax-pre-lttrn 8074 |
| This theorem depends on definitions: df-bi 117 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ne 2379 df-nel 2474 df-ral 2491 df-rex 2492 df-rab 2495 df-v 2778 df-sbc 3006 df-dif 3176 df-un 3178 df-in 3180 df-ss 3187 df-nul 3469 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-br 4060 df-opab 4122 df-id 4358 df-po 4361 df-iso 4362 df-xp 4699 df-rel 4700 df-cnv 4701 df-co 4702 df-dm 4703 df-iota 5251 df-fun 5292 df-fv 5298 df-ov 5970 df-oprab 5971 df-mpo 5972 df-pnf 8144 df-mnf 8145 df-xr 8146 df-ltxr 8147 df-le 8148 df-icc 10052 |
| This theorem is referenced by: dedekindicclemlub 15216 |
| Copyright terms: Public domain | W3C validator |