| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > dedekindicclemub | GIF version | ||
| Description: Lemma for dedekindicc 15220. The lower cut has an upper bound. (Contributed by Jim Kingdon, 15-Feb-2024.) |
| Ref | Expression |
|---|---|
| dedekindicc.a | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
| dedekindicc.b | ⊢ (𝜑 → 𝐵 ∈ ℝ) |
| dedekindicc.lss | ⊢ (𝜑 → 𝐿 ⊆ (𝐴[,]𝐵)) |
| dedekindicc.uss | ⊢ (𝜑 → 𝑈 ⊆ (𝐴[,]𝐵)) |
| dedekindicc.lm | ⊢ (𝜑 → ∃𝑞 ∈ (𝐴[,]𝐵)𝑞 ∈ 𝐿) |
| dedekindicc.um | ⊢ (𝜑 → ∃𝑟 ∈ (𝐴[,]𝐵)𝑟 ∈ 𝑈) |
| dedekindicc.lr | ⊢ (𝜑 → ∀𝑞 ∈ (𝐴[,]𝐵)(𝑞 ∈ 𝐿 ↔ ∃𝑟 ∈ 𝐿 𝑞 < 𝑟)) |
| dedekindicc.ur | ⊢ (𝜑 → ∀𝑟 ∈ (𝐴[,]𝐵)(𝑟 ∈ 𝑈 ↔ ∃𝑞 ∈ 𝑈 𝑞 < 𝑟)) |
| dedekindicc.disj | ⊢ (𝜑 → (𝐿 ∩ 𝑈) = ∅) |
| dedekindicc.loc | ⊢ (𝜑 → ∀𝑞 ∈ (𝐴[,]𝐵)∀𝑟 ∈ (𝐴[,]𝐵)(𝑞 < 𝑟 → (𝑞 ∈ 𝐿 ∨ 𝑟 ∈ 𝑈))) |
| Ref | Expression |
|---|---|
| dedekindicclemub | ⊢ (𝜑 → ∃𝑥 ∈ (𝐴[,]𝐵)∀𝑦 ∈ 𝐿 𝑦 < 𝑥) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dedekindicc.um | . . 3 ⊢ (𝜑 → ∃𝑟 ∈ (𝐴[,]𝐵)𝑟 ∈ 𝑈) | |
| 2 | eleq1w 2268 | . . . 4 ⊢ (𝑟 = 𝑎 → (𝑟 ∈ 𝑈 ↔ 𝑎 ∈ 𝑈)) | |
| 3 | 2 | cbvrexv 2743 | . . 3 ⊢ (∃𝑟 ∈ (𝐴[,]𝐵)𝑟 ∈ 𝑈 ↔ ∃𝑎 ∈ (𝐴[,]𝐵)𝑎 ∈ 𝑈) |
| 4 | 1, 3 | sylib 122 | . 2 ⊢ (𝜑 → ∃𝑎 ∈ (𝐴[,]𝐵)𝑎 ∈ 𝑈) |
| 5 | simprl 529 | . . 3 ⊢ ((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑎 ∈ 𝑈)) → 𝑎 ∈ (𝐴[,]𝐵)) | |
| 6 | dedekindicc.a | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
| 7 | 6 | adantr 276 | . . . 4 ⊢ ((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑎 ∈ 𝑈)) → 𝐴 ∈ ℝ) |
| 8 | dedekindicc.b | . . . . 5 ⊢ (𝜑 → 𝐵 ∈ ℝ) | |
| 9 | 8 | adantr 276 | . . . 4 ⊢ ((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑎 ∈ 𝑈)) → 𝐵 ∈ ℝ) |
| 10 | dedekindicc.lss | . . . . 5 ⊢ (𝜑 → 𝐿 ⊆ (𝐴[,]𝐵)) | |
| 11 | 10 | adantr 276 | . . . 4 ⊢ ((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑎 ∈ 𝑈)) → 𝐿 ⊆ (𝐴[,]𝐵)) |
| 12 | dedekindicc.uss | . . . . 5 ⊢ (𝜑 → 𝑈 ⊆ (𝐴[,]𝐵)) | |
| 13 | 12 | adantr 276 | . . . 4 ⊢ ((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑎 ∈ 𝑈)) → 𝑈 ⊆ (𝐴[,]𝐵)) |
| 14 | dedekindicc.lm | . . . . 5 ⊢ (𝜑 → ∃𝑞 ∈ (𝐴[,]𝐵)𝑞 ∈ 𝐿) | |
| 15 | 14 | adantr 276 | . . . 4 ⊢ ((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑎 ∈ 𝑈)) → ∃𝑞 ∈ (𝐴[,]𝐵)𝑞 ∈ 𝐿) |
| 16 | 1 | adantr 276 | . . . 4 ⊢ ((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑎 ∈ 𝑈)) → ∃𝑟 ∈ (𝐴[,]𝐵)𝑟 ∈ 𝑈) |
| 17 | dedekindicc.lr | . . . . 5 ⊢ (𝜑 → ∀𝑞 ∈ (𝐴[,]𝐵)(𝑞 ∈ 𝐿 ↔ ∃𝑟 ∈ 𝐿 𝑞 < 𝑟)) | |
| 18 | 17 | adantr 276 | . . . 4 ⊢ ((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑎 ∈ 𝑈)) → ∀𝑞 ∈ (𝐴[,]𝐵)(𝑞 ∈ 𝐿 ↔ ∃𝑟 ∈ 𝐿 𝑞 < 𝑟)) |
| 19 | dedekindicc.ur | . . . . 5 ⊢ (𝜑 → ∀𝑟 ∈ (𝐴[,]𝐵)(𝑟 ∈ 𝑈 ↔ ∃𝑞 ∈ 𝑈 𝑞 < 𝑟)) | |
| 20 | 19 | adantr 276 | . . . 4 ⊢ ((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑎 ∈ 𝑈)) → ∀𝑟 ∈ (𝐴[,]𝐵)(𝑟 ∈ 𝑈 ↔ ∃𝑞 ∈ 𝑈 𝑞 < 𝑟)) |
| 21 | dedekindicc.disj | . . . . 5 ⊢ (𝜑 → (𝐿 ∩ 𝑈) = ∅) | |
| 22 | 21 | adantr 276 | . . . 4 ⊢ ((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑎 ∈ 𝑈)) → (𝐿 ∩ 𝑈) = ∅) |
| 23 | dedekindicc.loc | . . . . 5 ⊢ (𝜑 → ∀𝑞 ∈ (𝐴[,]𝐵)∀𝑟 ∈ (𝐴[,]𝐵)(𝑞 < 𝑟 → (𝑞 ∈ 𝐿 ∨ 𝑟 ∈ 𝑈))) | |
| 24 | 23 | adantr 276 | . . . 4 ⊢ ((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑎 ∈ 𝑈)) → ∀𝑞 ∈ (𝐴[,]𝐵)∀𝑟 ∈ (𝐴[,]𝐵)(𝑞 < 𝑟 → (𝑞 ∈ 𝐿 ∨ 𝑟 ∈ 𝑈))) |
| 25 | simprr 531 | . . . 4 ⊢ ((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑎 ∈ 𝑈)) → 𝑎 ∈ 𝑈) | |
| 26 | 7, 9, 11, 13, 15, 16, 18, 20, 22, 24, 25 | dedekindicclemuub 15213 | . . 3 ⊢ ((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑎 ∈ 𝑈)) → ∀𝑦 ∈ 𝐿 𝑦 < 𝑎) |
| 27 | brralrspcev 4118 | . . 3 ⊢ ((𝑎 ∈ (𝐴[,]𝐵) ∧ ∀𝑦 ∈ 𝐿 𝑦 < 𝑎) → ∃𝑥 ∈ (𝐴[,]𝐵)∀𝑦 ∈ 𝐿 𝑦 < 𝑥) | |
| 28 | 5, 26, 27 | syl2anc 411 | . 2 ⊢ ((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑎 ∈ 𝑈)) → ∃𝑥 ∈ (𝐴[,]𝐵)∀𝑦 ∈ 𝐿 𝑦 < 𝑥) |
| 29 | 4, 28 | rexlimddv 2630 | 1 ⊢ (𝜑 → ∃𝑥 ∈ (𝐴[,]𝐵)∀𝑦 ∈ 𝐿 𝑦 < 𝑥) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 ∨ wo 710 = wceq 1373 ∈ wcel 2178 ∀wral 2486 ∃wrex 2487 ∩ cin 3173 ⊆ wss 3174 ∅c0 3468 class class class wbr 4059 (class class class)co 5967 ℝcr 7959 < clt 8142 [,]cicc 10048 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2180 ax-14 2181 ax-ext 2189 ax-sep 4178 ax-pow 4234 ax-pr 4269 ax-un 4498 ax-setind 4603 ax-cnex 8051 ax-resscn 8052 ax-pre-ltirr 8072 ax-pre-ltwlin 8073 ax-pre-lttrn 8074 |
| This theorem depends on definitions: df-bi 117 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ne 2379 df-nel 2474 df-ral 2491 df-rex 2492 df-rab 2495 df-v 2778 df-sbc 3006 df-dif 3176 df-un 3178 df-in 3180 df-ss 3187 df-nul 3469 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-br 4060 df-opab 4122 df-id 4358 df-po 4361 df-iso 4362 df-xp 4699 df-rel 4700 df-cnv 4701 df-co 4702 df-dm 4703 df-iota 5251 df-fun 5292 df-fv 5298 df-ov 5970 df-oprab 5971 df-mpo 5972 df-pnf 8144 df-mnf 8145 df-xr 8146 df-ltxr 8147 df-le 8148 df-icc 10052 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |