Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > dedekindicclemub | GIF version |
Description: Lemma for dedekindicc 13251. The lower cut has an upper bound. (Contributed by Jim Kingdon, 15-Feb-2024.) |
Ref | Expression |
---|---|
dedekindicc.a | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
dedekindicc.b | ⊢ (𝜑 → 𝐵 ∈ ℝ) |
dedekindicc.lss | ⊢ (𝜑 → 𝐿 ⊆ (𝐴[,]𝐵)) |
dedekindicc.uss | ⊢ (𝜑 → 𝑈 ⊆ (𝐴[,]𝐵)) |
dedekindicc.lm | ⊢ (𝜑 → ∃𝑞 ∈ (𝐴[,]𝐵)𝑞 ∈ 𝐿) |
dedekindicc.um | ⊢ (𝜑 → ∃𝑟 ∈ (𝐴[,]𝐵)𝑟 ∈ 𝑈) |
dedekindicc.lr | ⊢ (𝜑 → ∀𝑞 ∈ (𝐴[,]𝐵)(𝑞 ∈ 𝐿 ↔ ∃𝑟 ∈ 𝐿 𝑞 < 𝑟)) |
dedekindicc.ur | ⊢ (𝜑 → ∀𝑟 ∈ (𝐴[,]𝐵)(𝑟 ∈ 𝑈 ↔ ∃𝑞 ∈ 𝑈 𝑞 < 𝑟)) |
dedekindicc.disj | ⊢ (𝜑 → (𝐿 ∩ 𝑈) = ∅) |
dedekindicc.loc | ⊢ (𝜑 → ∀𝑞 ∈ (𝐴[,]𝐵)∀𝑟 ∈ (𝐴[,]𝐵)(𝑞 < 𝑟 → (𝑞 ∈ 𝐿 ∨ 𝑟 ∈ 𝑈))) |
Ref | Expression |
---|---|
dedekindicclemub | ⊢ (𝜑 → ∃𝑥 ∈ (𝐴[,]𝐵)∀𝑦 ∈ 𝐿 𝑦 < 𝑥) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dedekindicc.um | . . 3 ⊢ (𝜑 → ∃𝑟 ∈ (𝐴[,]𝐵)𝑟 ∈ 𝑈) | |
2 | eleq1w 2227 | . . . 4 ⊢ (𝑟 = 𝑎 → (𝑟 ∈ 𝑈 ↔ 𝑎 ∈ 𝑈)) | |
3 | 2 | cbvrexv 2693 | . . 3 ⊢ (∃𝑟 ∈ (𝐴[,]𝐵)𝑟 ∈ 𝑈 ↔ ∃𝑎 ∈ (𝐴[,]𝐵)𝑎 ∈ 𝑈) |
4 | 1, 3 | sylib 121 | . 2 ⊢ (𝜑 → ∃𝑎 ∈ (𝐴[,]𝐵)𝑎 ∈ 𝑈) |
5 | simprl 521 | . . 3 ⊢ ((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑎 ∈ 𝑈)) → 𝑎 ∈ (𝐴[,]𝐵)) | |
6 | dedekindicc.a | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
7 | 6 | adantr 274 | . . . 4 ⊢ ((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑎 ∈ 𝑈)) → 𝐴 ∈ ℝ) |
8 | dedekindicc.b | . . . . 5 ⊢ (𝜑 → 𝐵 ∈ ℝ) | |
9 | 8 | adantr 274 | . . . 4 ⊢ ((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑎 ∈ 𝑈)) → 𝐵 ∈ ℝ) |
10 | dedekindicc.lss | . . . . 5 ⊢ (𝜑 → 𝐿 ⊆ (𝐴[,]𝐵)) | |
11 | 10 | adantr 274 | . . . 4 ⊢ ((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑎 ∈ 𝑈)) → 𝐿 ⊆ (𝐴[,]𝐵)) |
12 | dedekindicc.uss | . . . . 5 ⊢ (𝜑 → 𝑈 ⊆ (𝐴[,]𝐵)) | |
13 | 12 | adantr 274 | . . . 4 ⊢ ((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑎 ∈ 𝑈)) → 𝑈 ⊆ (𝐴[,]𝐵)) |
14 | dedekindicc.lm | . . . . 5 ⊢ (𝜑 → ∃𝑞 ∈ (𝐴[,]𝐵)𝑞 ∈ 𝐿) | |
15 | 14 | adantr 274 | . . . 4 ⊢ ((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑎 ∈ 𝑈)) → ∃𝑞 ∈ (𝐴[,]𝐵)𝑞 ∈ 𝐿) |
16 | 1 | adantr 274 | . . . 4 ⊢ ((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑎 ∈ 𝑈)) → ∃𝑟 ∈ (𝐴[,]𝐵)𝑟 ∈ 𝑈) |
17 | dedekindicc.lr | . . . . 5 ⊢ (𝜑 → ∀𝑞 ∈ (𝐴[,]𝐵)(𝑞 ∈ 𝐿 ↔ ∃𝑟 ∈ 𝐿 𝑞 < 𝑟)) | |
18 | 17 | adantr 274 | . . . 4 ⊢ ((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑎 ∈ 𝑈)) → ∀𝑞 ∈ (𝐴[,]𝐵)(𝑞 ∈ 𝐿 ↔ ∃𝑟 ∈ 𝐿 𝑞 < 𝑟)) |
19 | dedekindicc.ur | . . . . 5 ⊢ (𝜑 → ∀𝑟 ∈ (𝐴[,]𝐵)(𝑟 ∈ 𝑈 ↔ ∃𝑞 ∈ 𝑈 𝑞 < 𝑟)) | |
20 | 19 | adantr 274 | . . . 4 ⊢ ((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑎 ∈ 𝑈)) → ∀𝑟 ∈ (𝐴[,]𝐵)(𝑟 ∈ 𝑈 ↔ ∃𝑞 ∈ 𝑈 𝑞 < 𝑟)) |
21 | dedekindicc.disj | . . . . 5 ⊢ (𝜑 → (𝐿 ∩ 𝑈) = ∅) | |
22 | 21 | adantr 274 | . . . 4 ⊢ ((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑎 ∈ 𝑈)) → (𝐿 ∩ 𝑈) = ∅) |
23 | dedekindicc.loc | . . . . 5 ⊢ (𝜑 → ∀𝑞 ∈ (𝐴[,]𝐵)∀𝑟 ∈ (𝐴[,]𝐵)(𝑞 < 𝑟 → (𝑞 ∈ 𝐿 ∨ 𝑟 ∈ 𝑈))) | |
24 | 23 | adantr 274 | . . . 4 ⊢ ((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑎 ∈ 𝑈)) → ∀𝑞 ∈ (𝐴[,]𝐵)∀𝑟 ∈ (𝐴[,]𝐵)(𝑞 < 𝑟 → (𝑞 ∈ 𝐿 ∨ 𝑟 ∈ 𝑈))) |
25 | simprr 522 | . . . 4 ⊢ ((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑎 ∈ 𝑈)) → 𝑎 ∈ 𝑈) | |
26 | 7, 9, 11, 13, 15, 16, 18, 20, 22, 24, 25 | dedekindicclemuub 13244 | . . 3 ⊢ ((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑎 ∈ 𝑈)) → ∀𝑦 ∈ 𝐿 𝑦 < 𝑎) |
27 | brralrspcev 4040 | . . 3 ⊢ ((𝑎 ∈ (𝐴[,]𝐵) ∧ ∀𝑦 ∈ 𝐿 𝑦 < 𝑎) → ∃𝑥 ∈ (𝐴[,]𝐵)∀𝑦 ∈ 𝐿 𝑦 < 𝑥) | |
28 | 5, 26, 27 | syl2anc 409 | . 2 ⊢ ((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑎 ∈ 𝑈)) → ∃𝑥 ∈ (𝐴[,]𝐵)∀𝑦 ∈ 𝐿 𝑦 < 𝑥) |
29 | 4, 28 | rexlimddv 2588 | 1 ⊢ (𝜑 → ∃𝑥 ∈ (𝐴[,]𝐵)∀𝑦 ∈ 𝐿 𝑦 < 𝑥) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ↔ wb 104 ∨ wo 698 = wceq 1343 ∈ wcel 2136 ∀wral 2444 ∃wrex 2445 ∩ cin 3115 ⊆ wss 3116 ∅c0 3409 class class class wbr 3982 (class class class)co 5842 ℝcr 7752 < clt 7933 [,]cicc 9827 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 ax-un 4411 ax-setind 4514 ax-cnex 7844 ax-resscn 7845 ax-pre-ltirr 7865 ax-pre-ltwlin 7866 ax-pre-lttrn 7867 |
This theorem depends on definitions: df-bi 116 df-3or 969 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-nel 2432 df-ral 2449 df-rex 2450 df-rab 2453 df-v 2728 df-sbc 2952 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-nul 3410 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-br 3983 df-opab 4044 df-id 4271 df-po 4274 df-iso 4275 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-iota 5153 df-fun 5190 df-fv 5196 df-ov 5845 df-oprab 5846 df-mpo 5847 df-pnf 7935 df-mnf 7936 df-xr 7937 df-ltxr 7938 df-le 7939 df-icc 9831 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |