ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dedekindicclemub GIF version

Theorem dedekindicclemub 15099
Description: Lemma for dedekindicc 15105. The lower cut has an upper bound. (Contributed by Jim Kingdon, 15-Feb-2024.)
Hypotheses
Ref Expression
dedekindicc.a (𝜑𝐴 ∈ ℝ)
dedekindicc.b (𝜑𝐵 ∈ ℝ)
dedekindicc.lss (𝜑𝐿 ⊆ (𝐴[,]𝐵))
dedekindicc.uss (𝜑𝑈 ⊆ (𝐴[,]𝐵))
dedekindicc.lm (𝜑 → ∃𝑞 ∈ (𝐴[,]𝐵)𝑞𝐿)
dedekindicc.um (𝜑 → ∃𝑟 ∈ (𝐴[,]𝐵)𝑟𝑈)
dedekindicc.lr (𝜑 → ∀𝑞 ∈ (𝐴[,]𝐵)(𝑞𝐿 ↔ ∃𝑟𝐿 𝑞 < 𝑟))
dedekindicc.ur (𝜑 → ∀𝑟 ∈ (𝐴[,]𝐵)(𝑟𝑈 ↔ ∃𝑞𝑈 𝑞 < 𝑟))
dedekindicc.disj (𝜑 → (𝐿𝑈) = ∅)
dedekindicc.loc (𝜑 → ∀𝑞 ∈ (𝐴[,]𝐵)∀𝑟 ∈ (𝐴[,]𝐵)(𝑞 < 𝑟 → (𝑞𝐿𝑟𝑈)))
Assertion
Ref Expression
dedekindicclemub (𝜑 → ∃𝑥 ∈ (𝐴[,]𝐵)∀𝑦𝐿 𝑦 < 𝑥)
Distinct variable groups:   𝐴,𝑞,𝑟,𝑦   𝑥,𝐴,𝑦   𝐵,𝑞,𝑟,𝑦   𝑥,𝐵   𝐿,𝑞,𝑦   𝑥,𝐿   𝑈,𝑞,𝑟,𝑦   𝜑,𝑞,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑟)   𝑈(𝑥)   𝐿(𝑟)

Proof of Theorem dedekindicclemub
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 dedekindicc.um . . 3 (𝜑 → ∃𝑟 ∈ (𝐴[,]𝐵)𝑟𝑈)
2 eleq1w 2266 . . . 4 (𝑟 = 𝑎 → (𝑟𝑈𝑎𝑈))
32cbvrexv 2739 . . 3 (∃𝑟 ∈ (𝐴[,]𝐵)𝑟𝑈 ↔ ∃𝑎 ∈ (𝐴[,]𝐵)𝑎𝑈)
41, 3sylib 122 . 2 (𝜑 → ∃𝑎 ∈ (𝐴[,]𝐵)𝑎𝑈)
5 simprl 529 . . 3 ((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑈)) → 𝑎 ∈ (𝐴[,]𝐵))
6 dedekindicc.a . . . . 5 (𝜑𝐴 ∈ ℝ)
76adantr 276 . . . 4 ((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑈)) → 𝐴 ∈ ℝ)
8 dedekindicc.b . . . . 5 (𝜑𝐵 ∈ ℝ)
98adantr 276 . . . 4 ((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑈)) → 𝐵 ∈ ℝ)
10 dedekindicc.lss . . . . 5 (𝜑𝐿 ⊆ (𝐴[,]𝐵))
1110adantr 276 . . . 4 ((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑈)) → 𝐿 ⊆ (𝐴[,]𝐵))
12 dedekindicc.uss . . . . 5 (𝜑𝑈 ⊆ (𝐴[,]𝐵))
1312adantr 276 . . . 4 ((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑈)) → 𝑈 ⊆ (𝐴[,]𝐵))
14 dedekindicc.lm . . . . 5 (𝜑 → ∃𝑞 ∈ (𝐴[,]𝐵)𝑞𝐿)
1514adantr 276 . . . 4 ((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑈)) → ∃𝑞 ∈ (𝐴[,]𝐵)𝑞𝐿)
161adantr 276 . . . 4 ((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑈)) → ∃𝑟 ∈ (𝐴[,]𝐵)𝑟𝑈)
17 dedekindicc.lr . . . . 5 (𝜑 → ∀𝑞 ∈ (𝐴[,]𝐵)(𝑞𝐿 ↔ ∃𝑟𝐿 𝑞 < 𝑟))
1817adantr 276 . . . 4 ((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑈)) → ∀𝑞 ∈ (𝐴[,]𝐵)(𝑞𝐿 ↔ ∃𝑟𝐿 𝑞 < 𝑟))
19 dedekindicc.ur . . . . 5 (𝜑 → ∀𝑟 ∈ (𝐴[,]𝐵)(𝑟𝑈 ↔ ∃𝑞𝑈 𝑞 < 𝑟))
2019adantr 276 . . . 4 ((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑈)) → ∀𝑟 ∈ (𝐴[,]𝐵)(𝑟𝑈 ↔ ∃𝑞𝑈 𝑞 < 𝑟))
21 dedekindicc.disj . . . . 5 (𝜑 → (𝐿𝑈) = ∅)
2221adantr 276 . . . 4 ((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑈)) → (𝐿𝑈) = ∅)
23 dedekindicc.loc . . . . 5 (𝜑 → ∀𝑞 ∈ (𝐴[,]𝐵)∀𝑟 ∈ (𝐴[,]𝐵)(𝑞 < 𝑟 → (𝑞𝐿𝑟𝑈)))
2423adantr 276 . . . 4 ((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑈)) → ∀𝑞 ∈ (𝐴[,]𝐵)∀𝑟 ∈ (𝐴[,]𝐵)(𝑞 < 𝑟 → (𝑞𝐿𝑟𝑈)))
25 simprr 531 . . . 4 ((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑈)) → 𝑎𝑈)
267, 9, 11, 13, 15, 16, 18, 20, 22, 24, 25dedekindicclemuub 15098 . . 3 ((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑈)) → ∀𝑦𝐿 𝑦 < 𝑎)
27 brralrspcev 4102 . . 3 ((𝑎 ∈ (𝐴[,]𝐵) ∧ ∀𝑦𝐿 𝑦 < 𝑎) → ∃𝑥 ∈ (𝐴[,]𝐵)∀𝑦𝐿 𝑦 < 𝑥)
285, 26, 27syl2anc 411 . 2 ((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑈)) → ∃𝑥 ∈ (𝐴[,]𝐵)∀𝑦𝐿 𝑦 < 𝑥)
294, 28rexlimddv 2628 1 (𝜑 → ∃𝑥 ∈ (𝐴[,]𝐵)∀𝑦𝐿 𝑦 < 𝑥)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  wo 710   = wceq 1373  wcel 2176  wral 2484  wrex 2485  cin 3165  wss 3166  c0 3460   class class class wbr 4044  (class class class)co 5944  cr 7924   < clt 8107  [,]cicc 10013
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-sep 4162  ax-pow 4218  ax-pr 4253  ax-un 4480  ax-setind 4585  ax-cnex 8016  ax-resscn 8017  ax-pre-ltirr 8037  ax-pre-ltwlin 8038  ax-pre-lttrn 8039
This theorem depends on definitions:  df-bi 117  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-nel 2472  df-ral 2489  df-rex 2490  df-rab 2493  df-v 2774  df-sbc 2999  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3461  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-br 4045  df-opab 4106  df-id 4340  df-po 4343  df-iso 4344  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-iota 5232  df-fun 5273  df-fv 5279  df-ov 5947  df-oprab 5948  df-mpo 5949  df-pnf 8109  df-mnf 8110  df-xr 8111  df-ltxr 8112  df-le 8113  df-icc 10017
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator