![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > dedekindicclemub | GIF version |
Description: Lemma for dedekindicc 14812. The lower cut has an upper bound. (Contributed by Jim Kingdon, 15-Feb-2024.) |
Ref | Expression |
---|---|
dedekindicc.a | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
dedekindicc.b | ⊢ (𝜑 → 𝐵 ∈ ℝ) |
dedekindicc.lss | ⊢ (𝜑 → 𝐿 ⊆ (𝐴[,]𝐵)) |
dedekindicc.uss | ⊢ (𝜑 → 𝑈 ⊆ (𝐴[,]𝐵)) |
dedekindicc.lm | ⊢ (𝜑 → ∃𝑞 ∈ (𝐴[,]𝐵)𝑞 ∈ 𝐿) |
dedekindicc.um | ⊢ (𝜑 → ∃𝑟 ∈ (𝐴[,]𝐵)𝑟 ∈ 𝑈) |
dedekindicc.lr | ⊢ (𝜑 → ∀𝑞 ∈ (𝐴[,]𝐵)(𝑞 ∈ 𝐿 ↔ ∃𝑟 ∈ 𝐿 𝑞 < 𝑟)) |
dedekindicc.ur | ⊢ (𝜑 → ∀𝑟 ∈ (𝐴[,]𝐵)(𝑟 ∈ 𝑈 ↔ ∃𝑞 ∈ 𝑈 𝑞 < 𝑟)) |
dedekindicc.disj | ⊢ (𝜑 → (𝐿 ∩ 𝑈) = ∅) |
dedekindicc.loc | ⊢ (𝜑 → ∀𝑞 ∈ (𝐴[,]𝐵)∀𝑟 ∈ (𝐴[,]𝐵)(𝑞 < 𝑟 → (𝑞 ∈ 𝐿 ∨ 𝑟 ∈ 𝑈))) |
Ref | Expression |
---|---|
dedekindicclemub | ⊢ (𝜑 → ∃𝑥 ∈ (𝐴[,]𝐵)∀𝑦 ∈ 𝐿 𝑦 < 𝑥) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dedekindicc.um | . . 3 ⊢ (𝜑 → ∃𝑟 ∈ (𝐴[,]𝐵)𝑟 ∈ 𝑈) | |
2 | eleq1w 2254 | . . . 4 ⊢ (𝑟 = 𝑎 → (𝑟 ∈ 𝑈 ↔ 𝑎 ∈ 𝑈)) | |
3 | 2 | cbvrexv 2727 | . . 3 ⊢ (∃𝑟 ∈ (𝐴[,]𝐵)𝑟 ∈ 𝑈 ↔ ∃𝑎 ∈ (𝐴[,]𝐵)𝑎 ∈ 𝑈) |
4 | 1, 3 | sylib 122 | . 2 ⊢ (𝜑 → ∃𝑎 ∈ (𝐴[,]𝐵)𝑎 ∈ 𝑈) |
5 | simprl 529 | . . 3 ⊢ ((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑎 ∈ 𝑈)) → 𝑎 ∈ (𝐴[,]𝐵)) | |
6 | dedekindicc.a | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
7 | 6 | adantr 276 | . . . 4 ⊢ ((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑎 ∈ 𝑈)) → 𝐴 ∈ ℝ) |
8 | dedekindicc.b | . . . . 5 ⊢ (𝜑 → 𝐵 ∈ ℝ) | |
9 | 8 | adantr 276 | . . . 4 ⊢ ((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑎 ∈ 𝑈)) → 𝐵 ∈ ℝ) |
10 | dedekindicc.lss | . . . . 5 ⊢ (𝜑 → 𝐿 ⊆ (𝐴[,]𝐵)) | |
11 | 10 | adantr 276 | . . . 4 ⊢ ((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑎 ∈ 𝑈)) → 𝐿 ⊆ (𝐴[,]𝐵)) |
12 | dedekindicc.uss | . . . . 5 ⊢ (𝜑 → 𝑈 ⊆ (𝐴[,]𝐵)) | |
13 | 12 | adantr 276 | . . . 4 ⊢ ((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑎 ∈ 𝑈)) → 𝑈 ⊆ (𝐴[,]𝐵)) |
14 | dedekindicc.lm | . . . . 5 ⊢ (𝜑 → ∃𝑞 ∈ (𝐴[,]𝐵)𝑞 ∈ 𝐿) | |
15 | 14 | adantr 276 | . . . 4 ⊢ ((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑎 ∈ 𝑈)) → ∃𝑞 ∈ (𝐴[,]𝐵)𝑞 ∈ 𝐿) |
16 | 1 | adantr 276 | . . . 4 ⊢ ((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑎 ∈ 𝑈)) → ∃𝑟 ∈ (𝐴[,]𝐵)𝑟 ∈ 𝑈) |
17 | dedekindicc.lr | . . . . 5 ⊢ (𝜑 → ∀𝑞 ∈ (𝐴[,]𝐵)(𝑞 ∈ 𝐿 ↔ ∃𝑟 ∈ 𝐿 𝑞 < 𝑟)) | |
18 | 17 | adantr 276 | . . . 4 ⊢ ((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑎 ∈ 𝑈)) → ∀𝑞 ∈ (𝐴[,]𝐵)(𝑞 ∈ 𝐿 ↔ ∃𝑟 ∈ 𝐿 𝑞 < 𝑟)) |
19 | dedekindicc.ur | . . . . 5 ⊢ (𝜑 → ∀𝑟 ∈ (𝐴[,]𝐵)(𝑟 ∈ 𝑈 ↔ ∃𝑞 ∈ 𝑈 𝑞 < 𝑟)) | |
20 | 19 | adantr 276 | . . . 4 ⊢ ((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑎 ∈ 𝑈)) → ∀𝑟 ∈ (𝐴[,]𝐵)(𝑟 ∈ 𝑈 ↔ ∃𝑞 ∈ 𝑈 𝑞 < 𝑟)) |
21 | dedekindicc.disj | . . . . 5 ⊢ (𝜑 → (𝐿 ∩ 𝑈) = ∅) | |
22 | 21 | adantr 276 | . . . 4 ⊢ ((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑎 ∈ 𝑈)) → (𝐿 ∩ 𝑈) = ∅) |
23 | dedekindicc.loc | . . . . 5 ⊢ (𝜑 → ∀𝑞 ∈ (𝐴[,]𝐵)∀𝑟 ∈ (𝐴[,]𝐵)(𝑞 < 𝑟 → (𝑞 ∈ 𝐿 ∨ 𝑟 ∈ 𝑈))) | |
24 | 23 | adantr 276 | . . . 4 ⊢ ((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑎 ∈ 𝑈)) → ∀𝑞 ∈ (𝐴[,]𝐵)∀𝑟 ∈ (𝐴[,]𝐵)(𝑞 < 𝑟 → (𝑞 ∈ 𝐿 ∨ 𝑟 ∈ 𝑈))) |
25 | simprr 531 | . . . 4 ⊢ ((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑎 ∈ 𝑈)) → 𝑎 ∈ 𝑈) | |
26 | 7, 9, 11, 13, 15, 16, 18, 20, 22, 24, 25 | dedekindicclemuub 14805 | . . 3 ⊢ ((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑎 ∈ 𝑈)) → ∀𝑦 ∈ 𝐿 𝑦 < 𝑎) |
27 | brralrspcev 4088 | . . 3 ⊢ ((𝑎 ∈ (𝐴[,]𝐵) ∧ ∀𝑦 ∈ 𝐿 𝑦 < 𝑎) → ∃𝑥 ∈ (𝐴[,]𝐵)∀𝑦 ∈ 𝐿 𝑦 < 𝑥) | |
28 | 5, 26, 27 | syl2anc 411 | . 2 ⊢ ((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑎 ∈ 𝑈)) → ∃𝑥 ∈ (𝐴[,]𝐵)∀𝑦 ∈ 𝐿 𝑦 < 𝑥) |
29 | 4, 28 | rexlimddv 2616 | 1 ⊢ (𝜑 → ∃𝑥 ∈ (𝐴[,]𝐵)∀𝑦 ∈ 𝐿 𝑦 < 𝑥) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 ∨ wo 709 = wceq 1364 ∈ wcel 2164 ∀wral 2472 ∃wrex 2473 ∩ cin 3153 ⊆ wss 3154 ∅c0 3447 class class class wbr 4030 (class class class)co 5919 ℝcr 7873 < clt 8056 [,]cicc 9960 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-sep 4148 ax-pow 4204 ax-pr 4239 ax-un 4465 ax-setind 4570 ax-cnex 7965 ax-resscn 7966 ax-pre-ltirr 7986 ax-pre-ltwlin 7987 ax-pre-lttrn 7988 |
This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-nel 2460 df-ral 2477 df-rex 2478 df-rab 2481 df-v 2762 df-sbc 2987 df-dif 3156 df-un 3158 df-in 3160 df-ss 3167 df-nul 3448 df-pw 3604 df-sn 3625 df-pr 3626 df-op 3628 df-uni 3837 df-br 4031 df-opab 4092 df-id 4325 df-po 4328 df-iso 4329 df-xp 4666 df-rel 4667 df-cnv 4668 df-co 4669 df-dm 4670 df-iota 5216 df-fun 5257 df-fv 5263 df-ov 5922 df-oprab 5923 df-mpo 5924 df-pnf 8058 df-mnf 8059 df-xr 8060 df-ltxr 8061 df-le 8062 df-icc 9964 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |