ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dedekindicclemub GIF version

Theorem dedekindicclemub 14863
Description: Lemma for dedekindicc 14869. The lower cut has an upper bound. (Contributed by Jim Kingdon, 15-Feb-2024.)
Hypotheses
Ref Expression
dedekindicc.a (𝜑𝐴 ∈ ℝ)
dedekindicc.b (𝜑𝐵 ∈ ℝ)
dedekindicc.lss (𝜑𝐿 ⊆ (𝐴[,]𝐵))
dedekindicc.uss (𝜑𝑈 ⊆ (𝐴[,]𝐵))
dedekindicc.lm (𝜑 → ∃𝑞 ∈ (𝐴[,]𝐵)𝑞𝐿)
dedekindicc.um (𝜑 → ∃𝑟 ∈ (𝐴[,]𝐵)𝑟𝑈)
dedekindicc.lr (𝜑 → ∀𝑞 ∈ (𝐴[,]𝐵)(𝑞𝐿 ↔ ∃𝑟𝐿 𝑞 < 𝑟))
dedekindicc.ur (𝜑 → ∀𝑟 ∈ (𝐴[,]𝐵)(𝑟𝑈 ↔ ∃𝑞𝑈 𝑞 < 𝑟))
dedekindicc.disj (𝜑 → (𝐿𝑈) = ∅)
dedekindicc.loc (𝜑 → ∀𝑞 ∈ (𝐴[,]𝐵)∀𝑟 ∈ (𝐴[,]𝐵)(𝑞 < 𝑟 → (𝑞𝐿𝑟𝑈)))
Assertion
Ref Expression
dedekindicclemub (𝜑 → ∃𝑥 ∈ (𝐴[,]𝐵)∀𝑦𝐿 𝑦 < 𝑥)
Distinct variable groups:   𝐴,𝑞,𝑟,𝑦   𝑥,𝐴,𝑦   𝐵,𝑞,𝑟,𝑦   𝑥,𝐵   𝐿,𝑞,𝑦   𝑥,𝐿   𝑈,𝑞,𝑟,𝑦   𝜑,𝑞,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑟)   𝑈(𝑥)   𝐿(𝑟)

Proof of Theorem dedekindicclemub
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 dedekindicc.um . . 3 (𝜑 → ∃𝑟 ∈ (𝐴[,]𝐵)𝑟𝑈)
2 eleq1w 2257 . . . 4 (𝑟 = 𝑎 → (𝑟𝑈𝑎𝑈))
32cbvrexv 2730 . . 3 (∃𝑟 ∈ (𝐴[,]𝐵)𝑟𝑈 ↔ ∃𝑎 ∈ (𝐴[,]𝐵)𝑎𝑈)
41, 3sylib 122 . 2 (𝜑 → ∃𝑎 ∈ (𝐴[,]𝐵)𝑎𝑈)
5 simprl 529 . . 3 ((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑈)) → 𝑎 ∈ (𝐴[,]𝐵))
6 dedekindicc.a . . . . 5 (𝜑𝐴 ∈ ℝ)
76adantr 276 . . . 4 ((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑈)) → 𝐴 ∈ ℝ)
8 dedekindicc.b . . . . 5 (𝜑𝐵 ∈ ℝ)
98adantr 276 . . . 4 ((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑈)) → 𝐵 ∈ ℝ)
10 dedekindicc.lss . . . . 5 (𝜑𝐿 ⊆ (𝐴[,]𝐵))
1110adantr 276 . . . 4 ((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑈)) → 𝐿 ⊆ (𝐴[,]𝐵))
12 dedekindicc.uss . . . . 5 (𝜑𝑈 ⊆ (𝐴[,]𝐵))
1312adantr 276 . . . 4 ((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑈)) → 𝑈 ⊆ (𝐴[,]𝐵))
14 dedekindicc.lm . . . . 5 (𝜑 → ∃𝑞 ∈ (𝐴[,]𝐵)𝑞𝐿)
1514adantr 276 . . . 4 ((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑈)) → ∃𝑞 ∈ (𝐴[,]𝐵)𝑞𝐿)
161adantr 276 . . . 4 ((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑈)) → ∃𝑟 ∈ (𝐴[,]𝐵)𝑟𝑈)
17 dedekindicc.lr . . . . 5 (𝜑 → ∀𝑞 ∈ (𝐴[,]𝐵)(𝑞𝐿 ↔ ∃𝑟𝐿 𝑞 < 𝑟))
1817adantr 276 . . . 4 ((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑈)) → ∀𝑞 ∈ (𝐴[,]𝐵)(𝑞𝐿 ↔ ∃𝑟𝐿 𝑞 < 𝑟))
19 dedekindicc.ur . . . . 5 (𝜑 → ∀𝑟 ∈ (𝐴[,]𝐵)(𝑟𝑈 ↔ ∃𝑞𝑈 𝑞 < 𝑟))
2019adantr 276 . . . 4 ((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑈)) → ∀𝑟 ∈ (𝐴[,]𝐵)(𝑟𝑈 ↔ ∃𝑞𝑈 𝑞 < 𝑟))
21 dedekindicc.disj . . . . 5 (𝜑 → (𝐿𝑈) = ∅)
2221adantr 276 . . . 4 ((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑈)) → (𝐿𝑈) = ∅)
23 dedekindicc.loc . . . . 5 (𝜑 → ∀𝑞 ∈ (𝐴[,]𝐵)∀𝑟 ∈ (𝐴[,]𝐵)(𝑞 < 𝑟 → (𝑞𝐿𝑟𝑈)))
2423adantr 276 . . . 4 ((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑈)) → ∀𝑞 ∈ (𝐴[,]𝐵)∀𝑟 ∈ (𝐴[,]𝐵)(𝑞 < 𝑟 → (𝑞𝐿𝑟𝑈)))
25 simprr 531 . . . 4 ((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑈)) → 𝑎𝑈)
267, 9, 11, 13, 15, 16, 18, 20, 22, 24, 25dedekindicclemuub 14862 . . 3 ((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑈)) → ∀𝑦𝐿 𝑦 < 𝑎)
27 brralrspcev 4091 . . 3 ((𝑎 ∈ (𝐴[,]𝐵) ∧ ∀𝑦𝐿 𝑦 < 𝑎) → ∃𝑥 ∈ (𝐴[,]𝐵)∀𝑦𝐿 𝑦 < 𝑥)
285, 26, 27syl2anc 411 . 2 ((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑈)) → ∃𝑥 ∈ (𝐴[,]𝐵)∀𝑦𝐿 𝑦 < 𝑥)
294, 28rexlimddv 2619 1 (𝜑 → ∃𝑥 ∈ (𝐴[,]𝐵)∀𝑦𝐿 𝑦 < 𝑥)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  wo 709   = wceq 1364  wcel 2167  wral 2475  wrex 2476  cin 3156  wss 3157  c0 3450   class class class wbr 4033  (class class class)co 5922  cr 7878   < clt 8061  [,]cicc 9966
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-cnex 7970  ax-resscn 7971  ax-pre-ltirr 7991  ax-pre-ltwlin 7992  ax-pre-lttrn 7993
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-rab 2484  df-v 2765  df-sbc 2990  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-br 4034  df-opab 4095  df-id 4328  df-po 4331  df-iso 4332  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-iota 5219  df-fun 5260  df-fv 5266  df-ov 5925  df-oprab 5926  df-mpo 5927  df-pnf 8063  df-mnf 8064  df-xr 8065  df-ltxr 8066  df-le 8067  df-icc 9970
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator