Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > fihashen1 | Unicode version |
Description: A finite set has size 1 if and only if it is equinumerous to the ordinal 1. (Contributed by AV, 14-Apr-2019.) (Intuitionized by Jim Kingdon, 23-Feb-2022.) |
Ref | Expression |
---|---|
fihashen1 | ♯ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0ex 4125 | . . . . . 6 | |
2 | hashsng 10746 | . . . . . 6 ♯ | |
3 | 1, 2 | ax-mp 5 | . . . . 5 ♯ |
4 | 3 | eqcomi 2179 | . . . 4 ♯ |
5 | 4 | a1i 9 | . . 3 ♯ |
6 | 5 | eqeq2d 2187 | . 2 ♯ ♯ ♯ |
7 | snfig 6804 | . . . 4 | |
8 | 1, 7 | ax-mp 5 | . . 3 |
9 | hashen 10732 | . . 3 ♯ ♯ | |
10 | 8, 9 | mpan2 425 | . 2 ♯ ♯ |
11 | df1o2 6420 | . . . . 5 | |
12 | 11 | eqcomi 2179 | . . . 4 |
13 | 12 | breq2i 4006 | . . 3 |
14 | 13 | a1i 9 | . 2 |
15 | 6, 10, 14 | 3bitrd 214 | 1 ♯ |
Colors of variables: wff set class |
Syntax hints: wi 4 wb 105 wceq 1353 wcel 2146 cvv 2735 c0 3420 csn 3589 class class class wbr 3998 cfv 5208 c1o 6400 cen 6728 cfn 6730 c1 7787 ♯chash 10723 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-13 2148 ax-14 2149 ax-ext 2157 ax-coll 4113 ax-sep 4116 ax-nul 4124 ax-pow 4169 ax-pr 4203 ax-un 4427 ax-setind 4530 ax-iinf 4581 ax-cnex 7877 ax-resscn 7878 ax-1cn 7879 ax-1re 7880 ax-icn 7881 ax-addcl 7882 ax-addrcl 7883 ax-mulcl 7884 ax-addcom 7886 ax-addass 7888 ax-distr 7890 ax-i2m1 7891 ax-0lt1 7892 ax-0id 7894 ax-rnegex 7895 ax-cnre 7897 ax-pre-ltirr 7898 ax-pre-ltwlin 7899 ax-pre-lttrn 7900 ax-pre-apti 7901 ax-pre-ltadd 7902 |
This theorem depends on definitions: df-bi 117 df-dc 835 df-3or 979 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1459 df-sb 1761 df-eu 2027 df-mo 2028 df-clab 2162 df-cleq 2168 df-clel 2171 df-nfc 2306 df-ne 2346 df-nel 2441 df-ral 2458 df-rex 2459 df-reu 2460 df-rab 2462 df-v 2737 df-sbc 2961 df-csb 3056 df-dif 3129 df-un 3131 df-in 3133 df-ss 3140 df-nul 3421 df-pw 3574 df-sn 3595 df-pr 3596 df-op 3598 df-uni 3806 df-int 3841 df-iun 3884 df-br 3999 df-opab 4060 df-mpt 4061 df-tr 4097 df-id 4287 df-iord 4360 df-on 4362 df-ilim 4363 df-suc 4365 df-iom 4584 df-xp 4626 df-rel 4627 df-cnv 4628 df-co 4629 df-dm 4630 df-rn 4631 df-res 4632 df-ima 4633 df-iota 5170 df-fun 5210 df-fn 5211 df-f 5212 df-f1 5213 df-fo 5214 df-f1o 5215 df-fv 5216 df-riota 5821 df-ov 5868 df-oprab 5869 df-mpo 5870 df-recs 6296 df-frec 6382 df-1o 6407 df-er 6525 df-en 6731 df-dom 6732 df-fin 6733 df-pnf 7968 df-mnf 7969 df-xr 7970 df-ltxr 7971 df-le 7972 df-sub 8104 df-neg 8105 df-inn 8893 df-n0 9150 df-z 9227 df-uz 9502 df-fz 9980 df-ihash 10724 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |