ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  bezoutlemex Unicode version

Theorem bezoutlemex 12168
Description: Lemma for Bézout's identity. Existence of a number which we will later show to be the greater common divisor and its decomposition into cofactors. (Contributed by Mario Carneiro and Jim Kingdon, 3-Jan-2022.)
Assertion
Ref Expression
bezoutlemex  |-  ( ( A  e.  NN0  /\  B  e.  NN0 )  ->  E. d  e.  NN0  ( A. z  e.  NN0  ( z  ||  d  ->  ( z  ||  A  /\  z  ||  B ) )  /\  E. x  e.  ZZ  E. y  e.  ZZ  d  =  ( ( A  x.  x
)  +  ( B  x.  y ) ) ) )
Distinct variable groups:    A, d, x, y    z, A, d    B, d, x, y    z, B

Proof of Theorem bezoutlemex
Dummy variables  a  b  s  t  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 5930 . . . . . . . 8  |-  ( y  =  t  ->  ( B  x.  y )  =  ( B  x.  t ) )
21oveq2d 5938 . . . . . . 7  |-  ( y  =  t  ->  (
( A  x.  x
)  +  ( B  x.  y ) )  =  ( ( A  x.  x )  +  ( B  x.  t
) ) )
32eqeq2d 2208 . . . . . 6  |-  ( y  =  t  ->  (
d  =  ( ( A  x.  x )  +  ( B  x.  y ) )  <->  d  =  ( ( A  x.  x )  +  ( B  x.  t ) ) ) )
43cbvrexv 2730 . . . . 5  |-  ( E. y  e.  ZZ  d  =  ( ( A  x.  x )  +  ( B  x.  y
) )  <->  E. t  e.  ZZ  d  =  ( ( A  x.  x
)  +  ( B  x.  t ) ) )
54rexbii 2504 . . . 4  |-  ( E. x  e.  ZZ  E. y  e.  ZZ  d  =  ( ( A  x.  x )  +  ( B  x.  y
) )  <->  E. x  e.  ZZ  E. t  e.  ZZ  d  =  ( ( A  x.  x
)  +  ( B  x.  t ) ) )
6 oveq2 5930 . . . . . . . 8  |-  ( x  =  s  ->  ( A  x.  x )  =  ( A  x.  s ) )
76oveq1d 5937 . . . . . . 7  |-  ( x  =  s  ->  (
( A  x.  x
)  +  ( B  x.  t ) )  =  ( ( A  x.  s )  +  ( B  x.  t
) ) )
87eqeq2d 2208 . . . . . 6  |-  ( x  =  s  ->  (
d  =  ( ( A  x.  x )  +  ( B  x.  t ) )  <->  d  =  ( ( A  x.  s )  +  ( B  x.  t ) ) ) )
98rexbidv 2498 . . . . 5  |-  ( x  =  s  ->  ( E. t  e.  ZZ  d  =  ( ( A  x.  x )  +  ( B  x.  t ) )  <->  E. t  e.  ZZ  d  =  ( ( A  x.  s
)  +  ( B  x.  t ) ) ) )
109cbvrexv 2730 . . . 4  |-  ( E. x  e.  ZZ  E. t  e.  ZZ  d  =  ( ( A  x.  x )  +  ( B  x.  t
) )  <->  E. s  e.  ZZ  E. t  e.  ZZ  d  =  ( ( A  x.  s
)  +  ( B  x.  t ) ) )
115, 10bitri 184 . . 3  |-  ( E. x  e.  ZZ  E. y  e.  ZZ  d  =  ( ( A  x.  x )  +  ( B  x.  y
) )  <->  E. s  e.  ZZ  E. t  e.  ZZ  d  =  ( ( A  x.  s
)  +  ( B  x.  t ) ) )
12 simpl 109 . . 3  |-  ( ( A  e.  NN0  /\  B  e.  NN0 )  ->  A  e.  NN0 )
13 simpr 110 . . 3  |-  ( ( A  e.  NN0  /\  B  e.  NN0 )  ->  B  e.  NN0 )
1411, 12, 13bezoutlemb 12167 . 2  |-  ( ( A  e.  NN0  /\  B  e.  NN0 )  ->  [. B  /  d ]. E. x  e.  ZZ  E. y  e.  ZZ  d  =  ( ( A  x.  x )  +  ( B  x.  y
) ) )
15 dfsbcq2 2992 . . . 4  |-  ( b  =  B  ->  ( [ b  /  d ] E. x  e.  ZZ  E. y  e.  ZZ  d  =  ( ( A  x.  x )  +  ( B  x.  y
) )  <->  [. B  / 
d ]. E. x  e.  ZZ  E. y  e.  ZZ  d  =  ( ( A  x.  x
)  +  ( B  x.  y ) ) ) )
16 breq2 4037 . . . . . . . . 9  |-  ( b  =  B  ->  (
z  ||  b  <->  z  ||  B ) )
1716anbi2d 464 . . . . . . . 8  |-  ( b  =  B  ->  (
( z  ||  A  /\  z  ||  b )  <-> 
( z  ||  A  /\  z  ||  B ) ) )
1817imbi2d 230 . . . . . . 7  |-  ( b  =  B  ->  (
( z  ||  d  ->  ( z  ||  A  /\  z  ||  b ) )  <->  ( z  ||  d  ->  ( z  ||  A  /\  z  ||  B
) ) ) )
1918ralbidv 2497 . . . . . 6  |-  ( b  =  B  ->  ( A. z  e.  NN0  ( z  ||  d  ->  ( z  ||  A  /\  z  ||  b ) )  <->  A. z  e.  NN0  ( z  ||  d  ->  ( z  ||  A  /\  z  ||  B ) ) ) )
2019anbi1d 465 . . . . 5  |-  ( b  =  B  ->  (
( A. z  e. 
NN0  ( z  ||  d  ->  ( z  ||  A  /\  z  ||  b
) )  /\  E. x  e.  ZZ  E. y  e.  ZZ  d  =  ( ( A  x.  x
)  +  ( B  x.  y ) ) )  <->  ( A. z  e.  NN0  ( z  ||  d  ->  ( z  ||  A  /\  z  ||  B
) )  /\  E. x  e.  ZZ  E. y  e.  ZZ  d  =  ( ( A  x.  x
)  +  ( B  x.  y ) ) ) ) )
2120rexbidv 2498 . . . 4  |-  ( b  =  B  ->  ( E. d  e.  NN0  ( A. z  e.  NN0  ( z  ||  d  ->  ( z  ||  A  /\  z  ||  b ) )  /\  E. x  e.  ZZ  E. y  e.  ZZ  d  =  ( ( A  x.  x
)  +  ( B  x.  y ) ) )  <->  E. d  e.  NN0  ( A. z  e.  NN0  ( z  ||  d  ->  ( z  ||  A  /\  z  ||  B ) )  /\  E. x  e.  ZZ  E. y  e.  ZZ  d  =  ( ( A  x.  x
)  +  ( B  x.  y ) ) ) ) )
2215, 21imbi12d 234 . . 3  |-  ( b  =  B  ->  (
( [ b  / 
d ] E. x  e.  ZZ  E. y  e.  ZZ  d  =  ( ( A  x.  x
)  +  ( B  x.  y ) )  ->  E. d  e.  NN0  ( A. z  e.  NN0  ( z  ||  d  ->  ( z  ||  A  /\  z  ||  b ) )  /\  E. x  e.  ZZ  E. y  e.  ZZ  d  =  ( ( A  x.  x
)  +  ( B  x.  y ) ) ) )  <->  ( [. B  /  d ]. E. x  e.  ZZ  E. y  e.  ZZ  d  =  ( ( A  x.  x
)  +  ( B  x.  y ) )  ->  E. d  e.  NN0  ( A. z  e.  NN0  ( z  ||  d  ->  ( z  ||  A  /\  z  ||  B ) )  /\  E. x  e.  ZZ  E. y  e.  ZZ  d  =  ( ( A  x.  x
)  +  ( B  x.  y ) ) ) ) ) )
2311, 12, 13bezoutlema 12166 . . . 4  |-  ( ( A  e.  NN0  /\  B  e.  NN0 )  ->  [. A  /  d ]. E. x  e.  ZZ  E. y  e.  ZZ  d  =  ( ( A  x.  x )  +  ( B  x.  y
) ) )
24 dfsbcq2 2992 . . . . . 6  |-  ( a  =  A  ->  ( [ a  /  d ] E. x  e.  ZZ  E. y  e.  ZZ  d  =  ( ( A  x.  x )  +  ( B  x.  y
) )  <->  [. A  / 
d ]. E. x  e.  ZZ  E. y  e.  ZZ  d  =  ( ( A  x.  x
)  +  ( B  x.  y ) ) ) )
25 breq2 4037 . . . . . . . . . . . . 13  |-  ( a  =  A  ->  (
z  ||  a  <->  z  ||  A ) )
2625anbi1d 465 . . . . . . . . . . . 12  |-  ( a  =  A  ->  (
( z  ||  a  /\  z  ||  b )  <-> 
( z  ||  A  /\  z  ||  b ) ) )
2726imbi2d 230 . . . . . . . . . . 11  |-  ( a  =  A  ->  (
( z  ||  d  ->  ( z  ||  a  /\  z  ||  b ) )  <->  ( z  ||  d  ->  ( z  ||  A  /\  z  ||  b
) ) ) )
2827ralbidv 2497 . . . . . . . . . 10  |-  ( a  =  A  ->  ( A. z  e.  NN0  ( z  ||  d  ->  ( z  ||  a  /\  z  ||  b ) )  <->  A. z  e.  NN0  ( z  ||  d  ->  ( z  ||  A  /\  z  ||  b ) ) ) )
2928anbi1d 465 . . . . . . . . 9  |-  ( a  =  A  ->  (
( A. z  e. 
NN0  ( z  ||  d  ->  ( z  ||  a  /\  z  ||  b
) )  /\  E. x  e.  ZZ  E. y  e.  ZZ  d  =  ( ( A  x.  x
)  +  ( B  x.  y ) ) )  <->  ( A. z  e.  NN0  ( z  ||  d  ->  ( z  ||  A  /\  z  ||  b
) )  /\  E. x  e.  ZZ  E. y  e.  ZZ  d  =  ( ( A  x.  x
)  +  ( B  x.  y ) ) ) ) )
3029rexbidv 2498 . . . . . . . 8  |-  ( a  =  A  ->  ( E. d  e.  NN0  ( A. z  e.  NN0  ( z  ||  d  ->  ( z  ||  a  /\  z  ||  b ) )  /\  E. x  e.  ZZ  E. y  e.  ZZ  d  =  ( ( A  x.  x
)  +  ( B  x.  y ) ) )  <->  E. d  e.  NN0  ( A. z  e.  NN0  ( z  ||  d  ->  ( z  ||  A  /\  z  ||  b ) )  /\  E. x  e.  ZZ  E. y  e.  ZZ  d  =  ( ( A  x.  x
)  +  ( B  x.  y ) ) ) ) )
3130imbi2d 230 . . . . . . 7  |-  ( a  =  A  ->  (
( [ b  / 
d ] E. x  e.  ZZ  E. y  e.  ZZ  d  =  ( ( A  x.  x
)  +  ( B  x.  y ) )  ->  E. d  e.  NN0  ( A. z  e.  NN0  ( z  ||  d  ->  ( z  ||  a  /\  z  ||  b ) )  /\  E. x  e.  ZZ  E. y  e.  ZZ  d  =  ( ( A  x.  x
)  +  ( B  x.  y ) ) ) )  <->  ( [
b  /  d ] E. x  e.  ZZ  E. y  e.  ZZ  d  =  ( ( A  x.  x )  +  ( B  x.  y
) )  ->  E. d  e.  NN0  ( A. z  e.  NN0  ( z  ||  d  ->  ( z  ||  A  /\  z  ||  b
) )  /\  E. x  e.  ZZ  E. y  e.  ZZ  d  =  ( ( A  x.  x
)  +  ( B  x.  y ) ) ) ) ) )
3231ralbidv 2497 . . . . . 6  |-  ( a  =  A  ->  ( A. b  e.  NN0  ( [ b  /  d ] E. x  e.  ZZ  E. y  e.  ZZ  d  =  ( ( A  x.  x )  +  ( B  x.  y
) )  ->  E. d  e.  NN0  ( A. z  e.  NN0  ( z  ||  d  ->  ( z  ||  a  /\  z  ||  b
) )  /\  E. x  e.  ZZ  E. y  e.  ZZ  d  =  ( ( A  x.  x
)  +  ( B  x.  y ) ) ) )  <->  A. b  e.  NN0  ( [ b  /  d ] E. x  e.  ZZ  E. y  e.  ZZ  d  =  ( ( A  x.  x
)  +  ( B  x.  y ) )  ->  E. d  e.  NN0  ( A. z  e.  NN0  ( z  ||  d  ->  ( z  ||  A  /\  z  ||  b ) )  /\  E. x  e.  ZZ  E. y  e.  ZZ  d  =  ( ( A  x.  x
)  +  ( B  x.  y ) ) ) ) ) )
3324, 32imbi12d 234 . . . . 5  |-  ( a  =  A  ->  (
( [ a  / 
d ] E. x  e.  ZZ  E. y  e.  ZZ  d  =  ( ( A  x.  x
)  +  ( B  x.  y ) )  ->  A. b  e.  NN0  ( [ b  /  d ] E. x  e.  ZZ  E. y  e.  ZZ  d  =  ( ( A  x.  x )  +  ( B  x.  y
) )  ->  E. d  e.  NN0  ( A. z  e.  NN0  ( z  ||  d  ->  ( z  ||  a  /\  z  ||  b
) )  /\  E. x  e.  ZZ  E. y  e.  ZZ  d  =  ( ( A  x.  x
)  +  ( B  x.  y ) ) ) ) )  <->  ( [. A  /  d ]. E. x  e.  ZZ  E. y  e.  ZZ  d  =  ( ( A  x.  x
)  +  ( B  x.  y ) )  ->  A. b  e.  NN0  ( [ b  /  d ] E. x  e.  ZZ  E. y  e.  ZZ  d  =  ( ( A  x.  x )  +  ( B  x.  y
) )  ->  E. d  e.  NN0  ( A. z  e.  NN0  ( z  ||  d  ->  ( z  ||  A  /\  z  ||  b
) )  /\  E. x  e.  ZZ  E. y  e.  ZZ  d  =  ( ( A  x.  x
)  +  ( B  x.  y ) ) ) ) ) ) )
34 breq1 4036 . . . . . . . 8  |-  ( z  =  w  ->  (
z  ||  d  <->  w  ||  d
) )
35 breq1 4036 . . . . . . . . 9  |-  ( z  =  w  ->  (
z  ||  a  <->  w  ||  a
) )
36 breq1 4036 . . . . . . . . 9  |-  ( z  =  w  ->  (
z  ||  b  <->  w  ||  b
) )
3735, 36anbi12d 473 . . . . . . . 8  |-  ( z  =  w  ->  (
( z  ||  a  /\  z  ||  b )  <-> 
( w  ||  a  /\  w  ||  b ) ) )
3834, 37imbi12d 234 . . . . . . 7  |-  ( z  =  w  ->  (
( z  ||  d  ->  ( z  ||  a  /\  z  ||  b ) )  <->  ( w  ||  d  ->  ( w  ||  a  /\  w  ||  b
) ) ) )
3938cbvralv 2729 . . . . . 6  |-  ( A. z  e.  NN0  ( z 
||  d  ->  (
z  ||  a  /\  z  ||  b ) )  <->  A. w  e.  NN0  ( w  ||  d  -> 
( w  ||  a  /\  w  ||  b ) ) )
4011, 39, 12, 13bezoutlemmain 12165 . . . . 5  |-  ( ( A  e.  NN0  /\  B  e.  NN0 )  ->  A. a  e.  NN0  ( [ a  /  d ] E. x  e.  ZZ  E. y  e.  ZZ  d  =  ( ( A  x.  x )  +  ( B  x.  y
) )  ->  A. b  e.  NN0  ( [ b  /  d ] E. x  e.  ZZ  E. y  e.  ZZ  d  =  ( ( A  x.  x
)  +  ( B  x.  y ) )  ->  E. d  e.  NN0  ( A. z  e.  NN0  ( z  ||  d  ->  ( z  ||  a  /\  z  ||  b ) )  /\  E. x  e.  ZZ  E. y  e.  ZZ  d  =  ( ( A  x.  x
)  +  ( B  x.  y ) ) ) ) ) )
4133, 40, 12rspcdva 2873 . . . 4  |-  ( ( A  e.  NN0  /\  B  e.  NN0 )  -> 
( [. A  /  d ]. E. x  e.  ZZ  E. y  e.  ZZ  d  =  ( ( A  x.  x )  +  ( B  x.  y
) )  ->  A. b  e.  NN0  ( [ b  /  d ] E. x  e.  ZZ  E. y  e.  ZZ  d  =  ( ( A  x.  x
)  +  ( B  x.  y ) )  ->  E. d  e.  NN0  ( A. z  e.  NN0  ( z  ||  d  ->  ( z  ||  A  /\  z  ||  b ) )  /\  E. x  e.  ZZ  E. y  e.  ZZ  d  =  ( ( A  x.  x
)  +  ( B  x.  y ) ) ) ) ) )
4223, 41mpd 13 . . 3  |-  ( ( A  e.  NN0  /\  B  e.  NN0 )  ->  A. b  e.  NN0  ( [ b  /  d ] E. x  e.  ZZ  E. y  e.  ZZ  d  =  ( ( A  x.  x )  +  ( B  x.  y
) )  ->  E. d  e.  NN0  ( A. z  e.  NN0  ( z  ||  d  ->  ( z  ||  A  /\  z  ||  b
) )  /\  E. x  e.  ZZ  E. y  e.  ZZ  d  =  ( ( A  x.  x
)  +  ( B  x.  y ) ) ) ) )
4322, 42, 13rspcdva 2873 . 2  |-  ( ( A  e.  NN0  /\  B  e.  NN0 )  -> 
( [. B  /  d ]. E. x  e.  ZZ  E. y  e.  ZZ  d  =  ( ( A  x.  x )  +  ( B  x.  y
) )  ->  E. d  e.  NN0  ( A. z  e.  NN0  ( z  ||  d  ->  ( z  ||  A  /\  z  ||  B
) )  /\  E. x  e.  ZZ  E. y  e.  ZZ  d  =  ( ( A  x.  x
)  +  ( B  x.  y ) ) ) ) )
4414, 43mpd 13 1  |-  ( ( A  e.  NN0  /\  B  e.  NN0 )  ->  E. d  e.  NN0  ( A. z  e.  NN0  ( z  ||  d  ->  ( z  ||  A  /\  z  ||  B ) )  /\  E. x  e.  ZZ  E. y  e.  ZZ  d  =  ( ( A  x.  x
)  +  ( B  x.  y ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1364   [wsb 1776    e. wcel 2167   A.wral 2475   E.wrex 2476   [.wsbc 2989   class class class wbr 4033  (class class class)co 5922    + caddc 7882    x. cmul 7884   NN0cn0 9249   ZZcz 9326    || cdvds 11952
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4148  ax-sep 4151  ax-nul 4159  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-iinf 4624  ax-cnex 7970  ax-resscn 7971  ax-1cn 7972  ax-1re 7973  ax-icn 7974  ax-addcl 7975  ax-addrcl 7976  ax-mulcl 7977  ax-mulrcl 7978  ax-addcom 7979  ax-mulcom 7980  ax-addass 7981  ax-mulass 7982  ax-distr 7983  ax-i2m1 7984  ax-0lt1 7985  ax-1rid 7986  ax-0id 7987  ax-rnegex 7988  ax-precex 7989  ax-cnre 7990  ax-pre-ltirr 7991  ax-pre-ltwlin 7992  ax-pre-lttrn 7993  ax-pre-apti 7994  ax-pre-ltadd 7995  ax-pre-mulgt0 7996  ax-pre-mulext 7997  ax-arch 7998
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-if 3562  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-tr 4132  df-id 4328  df-po 4331  df-iso 4332  df-iord 4401  df-on 4403  df-ilim 4404  df-suc 4406  df-iom 4627  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-riota 5877  df-ov 5925  df-oprab 5926  df-mpo 5927  df-1st 6198  df-2nd 6199  df-recs 6363  df-frec 6449  df-pnf 8063  df-mnf 8064  df-xr 8065  df-ltxr 8066  df-le 8067  df-sub 8199  df-neg 8200  df-reap 8602  df-ap 8609  df-div 8700  df-inn 8991  df-2 9049  df-n0 9250  df-z 9327  df-uz 9602  df-q 9694  df-rp 9729  df-fz 10084  df-fl 10360  df-mod 10415  df-seqfrec 10540  df-exp 10631  df-cj 11007  df-re 11008  df-im 11009  df-rsqrt 11163  df-abs 11164  df-dvds 11953
This theorem is referenced by:  bezoutlemzz  12169
  Copyright terms: Public domain W3C validator