ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  bezoutlemex Unicode version

Theorem bezoutlemex 12015
Description: Lemma for Bézout's identity. Existence of a number which we will later show to be the greater common divisor and its decomposition into cofactors. (Contributed by Mario Carneiro and Jim Kingdon, 3-Jan-2022.)
Assertion
Ref Expression
bezoutlemex  |-  ( ( A  e.  NN0  /\  B  e.  NN0 )  ->  E. d  e.  NN0  ( A. z  e.  NN0  ( z  ||  d  ->  ( z  ||  A  /\  z  ||  B ) )  /\  E. x  e.  ZZ  E. y  e.  ZZ  d  =  ( ( A  x.  x
)  +  ( B  x.  y ) ) ) )
Distinct variable groups:    A, d, x, y    z, A, d    B, d, x, y    z, B

Proof of Theorem bezoutlemex
Dummy variables  a  b  s  t  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 5896 . . . . . . . 8  |-  ( y  =  t  ->  ( B  x.  y )  =  ( B  x.  t ) )
21oveq2d 5904 . . . . . . 7  |-  ( y  =  t  ->  (
( A  x.  x
)  +  ( B  x.  y ) )  =  ( ( A  x.  x )  +  ( B  x.  t
) ) )
32eqeq2d 2199 . . . . . 6  |-  ( y  =  t  ->  (
d  =  ( ( A  x.  x )  +  ( B  x.  y ) )  <->  d  =  ( ( A  x.  x )  +  ( B  x.  t ) ) ) )
43cbvrexv 2716 . . . . 5  |-  ( E. y  e.  ZZ  d  =  ( ( A  x.  x )  +  ( B  x.  y
) )  <->  E. t  e.  ZZ  d  =  ( ( A  x.  x
)  +  ( B  x.  t ) ) )
54rexbii 2494 . . . 4  |-  ( E. x  e.  ZZ  E. y  e.  ZZ  d  =  ( ( A  x.  x )  +  ( B  x.  y
) )  <->  E. x  e.  ZZ  E. t  e.  ZZ  d  =  ( ( A  x.  x
)  +  ( B  x.  t ) ) )
6 oveq2 5896 . . . . . . . 8  |-  ( x  =  s  ->  ( A  x.  x )  =  ( A  x.  s ) )
76oveq1d 5903 . . . . . . 7  |-  ( x  =  s  ->  (
( A  x.  x
)  +  ( B  x.  t ) )  =  ( ( A  x.  s )  +  ( B  x.  t
) ) )
87eqeq2d 2199 . . . . . 6  |-  ( x  =  s  ->  (
d  =  ( ( A  x.  x )  +  ( B  x.  t ) )  <->  d  =  ( ( A  x.  s )  +  ( B  x.  t ) ) ) )
98rexbidv 2488 . . . . 5  |-  ( x  =  s  ->  ( E. t  e.  ZZ  d  =  ( ( A  x.  x )  +  ( B  x.  t ) )  <->  E. t  e.  ZZ  d  =  ( ( A  x.  s
)  +  ( B  x.  t ) ) ) )
109cbvrexv 2716 . . . 4  |-  ( E. x  e.  ZZ  E. t  e.  ZZ  d  =  ( ( A  x.  x )  +  ( B  x.  t
) )  <->  E. s  e.  ZZ  E. t  e.  ZZ  d  =  ( ( A  x.  s
)  +  ( B  x.  t ) ) )
115, 10bitri 184 . . 3  |-  ( E. x  e.  ZZ  E. y  e.  ZZ  d  =  ( ( A  x.  x )  +  ( B  x.  y
) )  <->  E. s  e.  ZZ  E. t  e.  ZZ  d  =  ( ( A  x.  s
)  +  ( B  x.  t ) ) )
12 simpl 109 . . 3  |-  ( ( A  e.  NN0  /\  B  e.  NN0 )  ->  A  e.  NN0 )
13 simpr 110 . . 3  |-  ( ( A  e.  NN0  /\  B  e.  NN0 )  ->  B  e.  NN0 )
1411, 12, 13bezoutlemb 12014 . 2  |-  ( ( A  e.  NN0  /\  B  e.  NN0 )  ->  [. B  /  d ]. E. x  e.  ZZ  E. y  e.  ZZ  d  =  ( ( A  x.  x )  +  ( B  x.  y
) ) )
15 dfsbcq2 2977 . . . 4  |-  ( b  =  B  ->  ( [ b  /  d ] E. x  e.  ZZ  E. y  e.  ZZ  d  =  ( ( A  x.  x )  +  ( B  x.  y
) )  <->  [. B  / 
d ]. E. x  e.  ZZ  E. y  e.  ZZ  d  =  ( ( A  x.  x
)  +  ( B  x.  y ) ) ) )
16 breq2 4019 . . . . . . . . 9  |-  ( b  =  B  ->  (
z  ||  b  <->  z  ||  B ) )
1716anbi2d 464 . . . . . . . 8  |-  ( b  =  B  ->  (
( z  ||  A  /\  z  ||  b )  <-> 
( z  ||  A  /\  z  ||  B ) ) )
1817imbi2d 230 . . . . . . 7  |-  ( b  =  B  ->  (
( z  ||  d  ->  ( z  ||  A  /\  z  ||  b ) )  <->  ( z  ||  d  ->  ( z  ||  A  /\  z  ||  B
) ) ) )
1918ralbidv 2487 . . . . . 6  |-  ( b  =  B  ->  ( A. z  e.  NN0  ( z  ||  d  ->  ( z  ||  A  /\  z  ||  b ) )  <->  A. z  e.  NN0  ( z  ||  d  ->  ( z  ||  A  /\  z  ||  B ) ) ) )
2019anbi1d 465 . . . . 5  |-  ( b  =  B  ->  (
( A. z  e. 
NN0  ( z  ||  d  ->  ( z  ||  A  /\  z  ||  b
) )  /\  E. x  e.  ZZ  E. y  e.  ZZ  d  =  ( ( A  x.  x
)  +  ( B  x.  y ) ) )  <->  ( A. z  e.  NN0  ( z  ||  d  ->  ( z  ||  A  /\  z  ||  B
) )  /\  E. x  e.  ZZ  E. y  e.  ZZ  d  =  ( ( A  x.  x
)  +  ( B  x.  y ) ) ) ) )
2120rexbidv 2488 . . . 4  |-  ( b  =  B  ->  ( E. d  e.  NN0  ( A. z  e.  NN0  ( z  ||  d  ->  ( z  ||  A  /\  z  ||  b ) )  /\  E. x  e.  ZZ  E. y  e.  ZZ  d  =  ( ( A  x.  x
)  +  ( B  x.  y ) ) )  <->  E. d  e.  NN0  ( A. z  e.  NN0  ( z  ||  d  ->  ( z  ||  A  /\  z  ||  B ) )  /\  E. x  e.  ZZ  E. y  e.  ZZ  d  =  ( ( A  x.  x
)  +  ( B  x.  y ) ) ) ) )
2215, 21imbi12d 234 . . 3  |-  ( b  =  B  ->  (
( [ b  / 
d ] E. x  e.  ZZ  E. y  e.  ZZ  d  =  ( ( A  x.  x
)  +  ( B  x.  y ) )  ->  E. d  e.  NN0  ( A. z  e.  NN0  ( z  ||  d  ->  ( z  ||  A  /\  z  ||  b ) )  /\  E. x  e.  ZZ  E. y  e.  ZZ  d  =  ( ( A  x.  x
)  +  ( B  x.  y ) ) ) )  <->  ( [. B  /  d ]. E. x  e.  ZZ  E. y  e.  ZZ  d  =  ( ( A  x.  x
)  +  ( B  x.  y ) )  ->  E. d  e.  NN0  ( A. z  e.  NN0  ( z  ||  d  ->  ( z  ||  A  /\  z  ||  B ) )  /\  E. x  e.  ZZ  E. y  e.  ZZ  d  =  ( ( A  x.  x
)  +  ( B  x.  y ) ) ) ) ) )
2311, 12, 13bezoutlema 12013 . . . 4  |-  ( ( A  e.  NN0  /\  B  e.  NN0 )  ->  [. A  /  d ]. E. x  e.  ZZ  E. y  e.  ZZ  d  =  ( ( A  x.  x )  +  ( B  x.  y
) ) )
24 dfsbcq2 2977 . . . . . 6  |-  ( a  =  A  ->  ( [ a  /  d ] E. x  e.  ZZ  E. y  e.  ZZ  d  =  ( ( A  x.  x )  +  ( B  x.  y
) )  <->  [. A  / 
d ]. E. x  e.  ZZ  E. y  e.  ZZ  d  =  ( ( A  x.  x
)  +  ( B  x.  y ) ) ) )
25 breq2 4019 . . . . . . . . . . . . 13  |-  ( a  =  A  ->  (
z  ||  a  <->  z  ||  A ) )
2625anbi1d 465 . . . . . . . . . . . 12  |-  ( a  =  A  ->  (
( z  ||  a  /\  z  ||  b )  <-> 
( z  ||  A  /\  z  ||  b ) ) )
2726imbi2d 230 . . . . . . . . . . 11  |-  ( a  =  A  ->  (
( z  ||  d  ->  ( z  ||  a  /\  z  ||  b ) )  <->  ( z  ||  d  ->  ( z  ||  A  /\  z  ||  b
) ) ) )
2827ralbidv 2487 . . . . . . . . . 10  |-  ( a  =  A  ->  ( A. z  e.  NN0  ( z  ||  d  ->  ( z  ||  a  /\  z  ||  b ) )  <->  A. z  e.  NN0  ( z  ||  d  ->  ( z  ||  A  /\  z  ||  b ) ) ) )
2928anbi1d 465 . . . . . . . . 9  |-  ( a  =  A  ->  (
( A. z  e. 
NN0  ( z  ||  d  ->  ( z  ||  a  /\  z  ||  b
) )  /\  E. x  e.  ZZ  E. y  e.  ZZ  d  =  ( ( A  x.  x
)  +  ( B  x.  y ) ) )  <->  ( A. z  e.  NN0  ( z  ||  d  ->  ( z  ||  A  /\  z  ||  b
) )  /\  E. x  e.  ZZ  E. y  e.  ZZ  d  =  ( ( A  x.  x
)  +  ( B  x.  y ) ) ) ) )
3029rexbidv 2488 . . . . . . . 8  |-  ( a  =  A  ->  ( E. d  e.  NN0  ( A. z  e.  NN0  ( z  ||  d  ->  ( z  ||  a  /\  z  ||  b ) )  /\  E. x  e.  ZZ  E. y  e.  ZZ  d  =  ( ( A  x.  x
)  +  ( B  x.  y ) ) )  <->  E. d  e.  NN0  ( A. z  e.  NN0  ( z  ||  d  ->  ( z  ||  A  /\  z  ||  b ) )  /\  E. x  e.  ZZ  E. y  e.  ZZ  d  =  ( ( A  x.  x
)  +  ( B  x.  y ) ) ) ) )
3130imbi2d 230 . . . . . . 7  |-  ( a  =  A  ->  (
( [ b  / 
d ] E. x  e.  ZZ  E. y  e.  ZZ  d  =  ( ( A  x.  x
)  +  ( B  x.  y ) )  ->  E. d  e.  NN0  ( A. z  e.  NN0  ( z  ||  d  ->  ( z  ||  a  /\  z  ||  b ) )  /\  E. x  e.  ZZ  E. y  e.  ZZ  d  =  ( ( A  x.  x
)  +  ( B  x.  y ) ) ) )  <->  ( [
b  /  d ] E. x  e.  ZZ  E. y  e.  ZZ  d  =  ( ( A  x.  x )  +  ( B  x.  y
) )  ->  E. d  e.  NN0  ( A. z  e.  NN0  ( z  ||  d  ->  ( z  ||  A  /\  z  ||  b
) )  /\  E. x  e.  ZZ  E. y  e.  ZZ  d  =  ( ( A  x.  x
)  +  ( B  x.  y ) ) ) ) ) )
3231ralbidv 2487 . . . . . 6  |-  ( a  =  A  ->  ( A. b  e.  NN0  ( [ b  /  d ] E. x  e.  ZZ  E. y  e.  ZZ  d  =  ( ( A  x.  x )  +  ( B  x.  y
) )  ->  E. d  e.  NN0  ( A. z  e.  NN0  ( z  ||  d  ->  ( z  ||  a  /\  z  ||  b
) )  /\  E. x  e.  ZZ  E. y  e.  ZZ  d  =  ( ( A  x.  x
)  +  ( B  x.  y ) ) ) )  <->  A. b  e.  NN0  ( [ b  /  d ] E. x  e.  ZZ  E. y  e.  ZZ  d  =  ( ( A  x.  x
)  +  ( B  x.  y ) )  ->  E. d  e.  NN0  ( A. z  e.  NN0  ( z  ||  d  ->  ( z  ||  A  /\  z  ||  b ) )  /\  E. x  e.  ZZ  E. y  e.  ZZ  d  =  ( ( A  x.  x
)  +  ( B  x.  y ) ) ) ) ) )
3324, 32imbi12d 234 . . . . 5  |-  ( a  =  A  ->  (
( [ a  / 
d ] E. x  e.  ZZ  E. y  e.  ZZ  d  =  ( ( A  x.  x
)  +  ( B  x.  y ) )  ->  A. b  e.  NN0  ( [ b  /  d ] E. x  e.  ZZ  E. y  e.  ZZ  d  =  ( ( A  x.  x )  +  ( B  x.  y
) )  ->  E. d  e.  NN0  ( A. z  e.  NN0  ( z  ||  d  ->  ( z  ||  a  /\  z  ||  b
) )  /\  E. x  e.  ZZ  E. y  e.  ZZ  d  =  ( ( A  x.  x
)  +  ( B  x.  y ) ) ) ) )  <->  ( [. A  /  d ]. E. x  e.  ZZ  E. y  e.  ZZ  d  =  ( ( A  x.  x
)  +  ( B  x.  y ) )  ->  A. b  e.  NN0  ( [ b  /  d ] E. x  e.  ZZ  E. y  e.  ZZ  d  =  ( ( A  x.  x )  +  ( B  x.  y
) )  ->  E. d  e.  NN0  ( A. z  e.  NN0  ( z  ||  d  ->  ( z  ||  A  /\  z  ||  b
) )  /\  E. x  e.  ZZ  E. y  e.  ZZ  d  =  ( ( A  x.  x
)  +  ( B  x.  y ) ) ) ) ) ) )
34 breq1 4018 . . . . . . . 8  |-  ( z  =  w  ->  (
z  ||  d  <->  w  ||  d
) )
35 breq1 4018 . . . . . . . . 9  |-  ( z  =  w  ->  (
z  ||  a  <->  w  ||  a
) )
36 breq1 4018 . . . . . . . . 9  |-  ( z  =  w  ->  (
z  ||  b  <->  w  ||  b
) )
3735, 36anbi12d 473 . . . . . . . 8  |-  ( z  =  w  ->  (
( z  ||  a  /\  z  ||  b )  <-> 
( w  ||  a  /\  w  ||  b ) ) )
3834, 37imbi12d 234 . . . . . . 7  |-  ( z  =  w  ->  (
( z  ||  d  ->  ( z  ||  a  /\  z  ||  b ) )  <->  ( w  ||  d  ->  ( w  ||  a  /\  w  ||  b
) ) ) )
3938cbvralv 2715 . . . . . 6  |-  ( A. z  e.  NN0  ( z 
||  d  ->  (
z  ||  a  /\  z  ||  b ) )  <->  A. w  e.  NN0  ( w  ||  d  -> 
( w  ||  a  /\  w  ||  b ) ) )
4011, 39, 12, 13bezoutlemmain 12012 . . . . 5  |-  ( ( A  e.  NN0  /\  B  e.  NN0 )  ->  A. a  e.  NN0  ( [ a  /  d ] E. x  e.  ZZ  E. y  e.  ZZ  d  =  ( ( A  x.  x )  +  ( B  x.  y
) )  ->  A. b  e.  NN0  ( [ b  /  d ] E. x  e.  ZZ  E. y  e.  ZZ  d  =  ( ( A  x.  x
)  +  ( B  x.  y ) )  ->  E. d  e.  NN0  ( A. z  e.  NN0  ( z  ||  d  ->  ( z  ||  a  /\  z  ||  b ) )  /\  E. x  e.  ZZ  E. y  e.  ZZ  d  =  ( ( A  x.  x
)  +  ( B  x.  y ) ) ) ) ) )
4133, 40, 12rspcdva 2858 . . . 4  |-  ( ( A  e.  NN0  /\  B  e.  NN0 )  -> 
( [. A  /  d ]. E. x  e.  ZZ  E. y  e.  ZZ  d  =  ( ( A  x.  x )  +  ( B  x.  y
) )  ->  A. b  e.  NN0  ( [ b  /  d ] E. x  e.  ZZ  E. y  e.  ZZ  d  =  ( ( A  x.  x
)  +  ( B  x.  y ) )  ->  E. d  e.  NN0  ( A. z  e.  NN0  ( z  ||  d  ->  ( z  ||  A  /\  z  ||  b ) )  /\  E. x  e.  ZZ  E. y  e.  ZZ  d  =  ( ( A  x.  x
)  +  ( B  x.  y ) ) ) ) ) )
4223, 41mpd 13 . . 3  |-  ( ( A  e.  NN0  /\  B  e.  NN0 )  ->  A. b  e.  NN0  ( [ b  /  d ] E. x  e.  ZZ  E. y  e.  ZZ  d  =  ( ( A  x.  x )  +  ( B  x.  y
) )  ->  E. d  e.  NN0  ( A. z  e.  NN0  ( z  ||  d  ->  ( z  ||  A  /\  z  ||  b
) )  /\  E. x  e.  ZZ  E. y  e.  ZZ  d  =  ( ( A  x.  x
)  +  ( B  x.  y ) ) ) ) )
4322, 42, 13rspcdva 2858 . 2  |-  ( ( A  e.  NN0  /\  B  e.  NN0 )  -> 
( [. B  /  d ]. E. x  e.  ZZ  E. y  e.  ZZ  d  =  ( ( A  x.  x )  +  ( B  x.  y
) )  ->  E. d  e.  NN0  ( A. z  e.  NN0  ( z  ||  d  ->  ( z  ||  A  /\  z  ||  B
) )  /\  E. x  e.  ZZ  E. y  e.  ZZ  d  =  ( ( A  x.  x
)  +  ( B  x.  y ) ) ) ) )
4414, 43mpd 13 1  |-  ( ( A  e.  NN0  /\  B  e.  NN0 )  ->  E. d  e.  NN0  ( A. z  e.  NN0  ( z  ||  d  ->  ( z  ||  A  /\  z  ||  B ) )  /\  E. x  e.  ZZ  E. y  e.  ZZ  d  =  ( ( A  x.  x
)  +  ( B  x.  y ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1363   [wsb 1772    e. wcel 2158   A.wral 2465   E.wrex 2466   [.wsbc 2974   class class class wbr 4015  (class class class)co 5888    + caddc 7827    x. cmul 7829   NN0cn0 9189   ZZcz 9266    || cdvds 11807
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1457  ax-7 1458  ax-gen 1459  ax-ie1 1503  ax-ie2 1504  ax-8 1514  ax-10 1515  ax-11 1516  ax-i12 1517  ax-bndl 1519  ax-4 1520  ax-17 1536  ax-i9 1540  ax-ial 1544  ax-i5r 1545  ax-13 2160  ax-14 2161  ax-ext 2169  ax-coll 4130  ax-sep 4133  ax-nul 4141  ax-pow 4186  ax-pr 4221  ax-un 4445  ax-setind 4548  ax-iinf 4599  ax-cnex 7915  ax-resscn 7916  ax-1cn 7917  ax-1re 7918  ax-icn 7919  ax-addcl 7920  ax-addrcl 7921  ax-mulcl 7922  ax-mulrcl 7923  ax-addcom 7924  ax-mulcom 7925  ax-addass 7926  ax-mulass 7927  ax-distr 7928  ax-i2m1 7929  ax-0lt1 7930  ax-1rid 7931  ax-0id 7932  ax-rnegex 7933  ax-precex 7934  ax-cnre 7935  ax-pre-ltirr 7936  ax-pre-ltwlin 7937  ax-pre-lttrn 7938  ax-pre-apti 7939  ax-pre-ltadd 7940  ax-pre-mulgt0 7941  ax-pre-mulext 7942  ax-arch 7943
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 980  df-3an 981  df-tru 1366  df-fal 1369  df-nf 1471  df-sb 1773  df-eu 2039  df-mo 2040  df-clab 2174  df-cleq 2180  df-clel 2183  df-nfc 2318  df-ne 2358  df-nel 2453  df-ral 2470  df-rex 2471  df-reu 2472  df-rmo 2473  df-rab 2474  df-v 2751  df-sbc 2975  df-csb 3070  df-dif 3143  df-un 3145  df-in 3147  df-ss 3154  df-nul 3435  df-if 3547  df-pw 3589  df-sn 3610  df-pr 3611  df-op 3613  df-uni 3822  df-int 3857  df-iun 3900  df-br 4016  df-opab 4077  df-mpt 4078  df-tr 4114  df-id 4305  df-po 4308  df-iso 4309  df-iord 4378  df-on 4380  df-ilim 4381  df-suc 4383  df-iom 4602  df-xp 4644  df-rel 4645  df-cnv 4646  df-co 4647  df-dm 4648  df-rn 4649  df-res 4650  df-ima 4651  df-iota 5190  df-fun 5230  df-fn 5231  df-f 5232  df-f1 5233  df-fo 5234  df-f1o 5235  df-fv 5236  df-riota 5844  df-ov 5891  df-oprab 5892  df-mpo 5893  df-1st 6154  df-2nd 6155  df-recs 6319  df-frec 6405  df-pnf 8007  df-mnf 8008  df-xr 8009  df-ltxr 8010  df-le 8011  df-sub 8143  df-neg 8144  df-reap 8545  df-ap 8552  df-div 8643  df-inn 8933  df-2 8991  df-n0 9190  df-z 9267  df-uz 9542  df-q 9633  df-rp 9667  df-fz 10022  df-fl 10283  df-mod 10336  df-seqfrec 10459  df-exp 10533  df-cj 10864  df-re 10865  df-im 10866  df-rsqrt 11020  df-abs 11021  df-dvds 11808
This theorem is referenced by:  bezoutlemzz  12016
  Copyright terms: Public domain W3C validator