Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > djuenun | GIF version |
Description: Disjoint union is equinumerous to union for disjoint sets. (Contributed by Mario Carneiro, 29-Apr-2015.) (Revised by Jim Kingdon, 19-Aug-2023.) |
Ref | Expression |
---|---|
djuenun | ⊢ ((𝐴 ≈ 𝐵 ∧ 𝐶 ≈ 𝐷 ∧ (𝐵 ∩ 𝐷) = ∅) → (𝐴 ⊔ 𝐶) ≈ (𝐵 ∪ 𝐷)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | djuen 7188 | . . 3 ⊢ ((𝐴 ≈ 𝐵 ∧ 𝐶 ≈ 𝐷) → (𝐴 ⊔ 𝐶) ≈ (𝐵 ⊔ 𝐷)) | |
2 | 1 | 3adant3 1012 | . 2 ⊢ ((𝐴 ≈ 𝐵 ∧ 𝐶 ≈ 𝐷 ∧ (𝐵 ∩ 𝐷) = ∅) → (𝐴 ⊔ 𝐶) ≈ (𝐵 ⊔ 𝐷)) |
3 | relen 6722 | . . . 4 ⊢ Rel ≈ | |
4 | 3 | brrelex2i 4655 | . . 3 ⊢ (𝐴 ≈ 𝐵 → 𝐵 ∈ V) |
5 | 3 | brrelex2i 4655 | . . 3 ⊢ (𝐶 ≈ 𝐷 → 𝐷 ∈ V) |
6 | id 19 | . . 3 ⊢ ((𝐵 ∩ 𝐷) = ∅ → (𝐵 ∩ 𝐷) = ∅) | |
7 | endjudisj 7187 | . . 3 ⊢ ((𝐵 ∈ V ∧ 𝐷 ∈ V ∧ (𝐵 ∩ 𝐷) = ∅) → (𝐵 ⊔ 𝐷) ≈ (𝐵 ∪ 𝐷)) | |
8 | 4, 5, 6, 7 | syl3an 1275 | . 2 ⊢ ((𝐴 ≈ 𝐵 ∧ 𝐶 ≈ 𝐷 ∧ (𝐵 ∩ 𝐷) = ∅) → (𝐵 ⊔ 𝐷) ≈ (𝐵 ∪ 𝐷)) |
9 | entr 6762 | . 2 ⊢ (((𝐴 ⊔ 𝐶) ≈ (𝐵 ⊔ 𝐷) ∧ (𝐵 ⊔ 𝐷) ≈ (𝐵 ∪ 𝐷)) → (𝐴 ⊔ 𝐶) ≈ (𝐵 ∪ 𝐷)) | |
10 | 2, 8, 9 | syl2anc 409 | 1 ⊢ ((𝐴 ≈ 𝐵 ∧ 𝐶 ≈ 𝐷 ∧ (𝐵 ∩ 𝐷) = ∅) → (𝐴 ⊔ 𝐶) ≈ (𝐵 ∪ 𝐷)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ w3a 973 = wceq 1348 ∈ wcel 2141 Vcvv 2730 ∪ cun 3119 ∩ cin 3120 ∅c0 3414 class class class wbr 3989 ≈ cen 6716 ⊔ cdju 7014 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-coll 4104 ax-sep 4107 ax-nul 4115 ax-pow 4160 ax-pr 4194 ax-un 4418 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-ral 2453 df-rex 2454 df-reu 2455 df-rab 2457 df-v 2732 df-sbc 2956 df-csb 3050 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-nul 3415 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-iun 3875 df-br 3990 df-opab 4051 df-mpt 4052 df-tr 4088 df-id 4278 df-iord 4351 df-on 4353 df-suc 4356 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-rn 4622 df-res 4623 df-ima 4624 df-iota 5160 df-fun 5200 df-fn 5201 df-f 5202 df-f1 5203 df-fo 5204 df-f1o 5205 df-fv 5206 df-1st 6119 df-2nd 6120 df-1o 6395 df-er 6513 df-en 6719 df-dju 7015 df-inl 7024 df-inr 7025 |
This theorem is referenced by: dju1en 7190 djucomen 7193 djuassen 7194 xpdjuen 7195 |
Copyright terms: Public domain | W3C validator |