| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > djuenun | GIF version | ||
| Description: Disjoint union is equinumerous to union for disjoint sets. (Contributed by Mario Carneiro, 29-Apr-2015.) (Revised by Jim Kingdon, 19-Aug-2023.) | 
| Ref | Expression | 
|---|---|
| djuenun | ⊢ ((𝐴 ≈ 𝐵 ∧ 𝐶 ≈ 𝐷 ∧ (𝐵 ∩ 𝐷) = ∅) → (𝐴 ⊔ 𝐶) ≈ (𝐵 ∪ 𝐷)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | djuen 7278 | . . 3 ⊢ ((𝐴 ≈ 𝐵 ∧ 𝐶 ≈ 𝐷) → (𝐴 ⊔ 𝐶) ≈ (𝐵 ⊔ 𝐷)) | |
| 2 | 1 | 3adant3 1019 | . 2 ⊢ ((𝐴 ≈ 𝐵 ∧ 𝐶 ≈ 𝐷 ∧ (𝐵 ∩ 𝐷) = ∅) → (𝐴 ⊔ 𝐶) ≈ (𝐵 ⊔ 𝐷)) | 
| 3 | relen 6803 | . . . 4 ⊢ Rel ≈ | |
| 4 | 3 | brrelex2i 4707 | . . 3 ⊢ (𝐴 ≈ 𝐵 → 𝐵 ∈ V) | 
| 5 | 3 | brrelex2i 4707 | . . 3 ⊢ (𝐶 ≈ 𝐷 → 𝐷 ∈ V) | 
| 6 | id 19 | . . 3 ⊢ ((𝐵 ∩ 𝐷) = ∅ → (𝐵 ∩ 𝐷) = ∅) | |
| 7 | endjudisj 7277 | . . 3 ⊢ ((𝐵 ∈ V ∧ 𝐷 ∈ V ∧ (𝐵 ∩ 𝐷) = ∅) → (𝐵 ⊔ 𝐷) ≈ (𝐵 ∪ 𝐷)) | |
| 8 | 4, 5, 6, 7 | syl3an 1291 | . 2 ⊢ ((𝐴 ≈ 𝐵 ∧ 𝐶 ≈ 𝐷 ∧ (𝐵 ∩ 𝐷) = ∅) → (𝐵 ⊔ 𝐷) ≈ (𝐵 ∪ 𝐷)) | 
| 9 | entr 6843 | . 2 ⊢ (((𝐴 ⊔ 𝐶) ≈ (𝐵 ⊔ 𝐷) ∧ (𝐵 ⊔ 𝐷) ≈ (𝐵 ∪ 𝐷)) → (𝐴 ⊔ 𝐶) ≈ (𝐵 ∪ 𝐷)) | |
| 10 | 2, 8, 9 | syl2anc 411 | 1 ⊢ ((𝐴 ≈ 𝐵 ∧ 𝐶 ≈ 𝐷 ∧ (𝐵 ∩ 𝐷) = ∅) → (𝐴 ⊔ 𝐶) ≈ (𝐵 ∪ 𝐷)) | 
| Colors of variables: wff set class | 
| Syntax hints: → wi 4 ∧ w3a 980 = wceq 1364 ∈ wcel 2167 Vcvv 2763 ∪ cun 3155 ∩ cin 3156 ∅c0 3450 class class class wbr 4033 ≈ cen 6797 ⊔ cdju 7103 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4148 ax-sep 4151 ax-nul 4159 ax-pow 4207 ax-pr 4242 ax-un 4468 | 
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-ral 2480 df-rex 2481 df-reu 2482 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3451 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-iun 3918 df-br 4034 df-opab 4095 df-mpt 4096 df-tr 4132 df-id 4328 df-iord 4401 df-on 4403 df-suc 4406 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-res 4675 df-ima 4676 df-iota 5219 df-fun 5260 df-fn 5261 df-f 5262 df-f1 5263 df-fo 5264 df-f1o 5265 df-fv 5266 df-1st 6198 df-2nd 6199 df-1o 6474 df-er 6592 df-en 6800 df-dju 7104 df-inl 7113 df-inr 7114 | 
| This theorem is referenced by: dju1en 7280 djucomen 7283 djuassen 7284 xpdjuen 7285 | 
| Copyright terms: Public domain | W3C validator |