ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  00sr Unicode version

Theorem 00sr 7710
Description: A signed real times 0 is 0. (Contributed by NM, 10-Apr-1996.)
Assertion
Ref Expression
00sr  |-  ( A  e.  R.  ->  ( A  .R  0R )  =  0R )

Proof of Theorem 00sr
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-nr 7668 . 2  |-  R.  =  ( ( P.  X.  P. ) /.  ~R  )
2 oveq1 5849 . . 3  |-  ( [
<. x ,  y >. ]  ~R  =  A  -> 
( [ <. x ,  y >. ]  ~R  .R  0R )  =  ( A  .R  0R ) )
32eqeq1d 2174 . 2  |-  ( [
<. x ,  y >. ]  ~R  =  A  -> 
( ( [ <. x ,  y >. ]  ~R  .R  0R )  =  0R  <->  ( A  .R  0R )  =  0R ) )
4 1pr 7495 . . . . 5  |-  1P  e.  P.
5 mulsrpr 7687 . . . . 5  |-  ( ( ( x  e.  P.  /\  y  e.  P. )  /\  ( 1P  e.  P.  /\  1P  e.  P. )
)  ->  ( [ <. x ,  y >. ]  ~R  .R  [ <. 1P ,  1P >. ]  ~R  )  =  [ <. (
( x  .P.  1P )  +P.  ( y  .P. 
1P ) ) ,  ( ( x  .P.  1P )  +P.  ( y  .P.  1P ) )
>. ]  ~R  )
64, 4, 5mpanr12 436 . . . 4  |-  ( ( x  e.  P.  /\  y  e.  P. )  ->  ( [ <. x ,  y >. ]  ~R  .R 
[ <. 1P ,  1P >. ]  ~R  )  =  [ <. ( ( x  .P.  1P )  +P.  ( y  .P.  1P ) ) ,  ( ( x  .P.  1P )  +P.  ( y  .P. 
1P ) ) >. ]  ~R  )
7 mulclpr 7513 . . . . . . . . . 10  |-  ( ( x  e.  P.  /\  1P  e.  P. )  -> 
( x  .P.  1P )  e.  P. )
84, 7mpan2 422 . . . . . . . . 9  |-  ( x  e.  P.  ->  (
x  .P.  1P )  e.  P. )
9 mulclpr 7513 . . . . . . . . . 10  |-  ( ( y  e.  P.  /\  1P  e.  P. )  -> 
( y  .P.  1P )  e.  P. )
104, 9mpan2 422 . . . . . . . . 9  |-  ( y  e.  P.  ->  (
y  .P.  1P )  e.  P. )
11 addclpr 7478 . . . . . . . . 9  |-  ( ( ( x  .P.  1P )  e.  P.  /\  (
y  .P.  1P )  e.  P. )  ->  (
( x  .P.  1P )  +P.  ( y  .P. 
1P ) )  e. 
P. )
128, 10, 11syl2an 287 . . . . . . . 8  |-  ( ( x  e.  P.  /\  y  e.  P. )  ->  ( ( x  .P.  1P )  +P.  ( y  .P.  1P ) )  e.  P. )
1312, 12anim12i 336 . . . . . . 7  |-  ( ( ( x  e.  P.  /\  y  e.  P. )  /\  ( x  e.  P.  /\  y  e.  P. )
)  ->  ( (
( x  .P.  1P )  +P.  ( y  .P. 
1P ) )  e. 
P.  /\  ( (
x  .P.  1P )  +P.  ( y  .P.  1P ) )  e.  P. ) )
14 eqid 2165 . . . . . . . 8  |-  ( ( ( x  .P.  1P )  +P.  ( y  .P. 
1P ) )  +P. 
1P )  =  ( ( ( x  .P.  1P )  +P.  ( y  .P.  1P ) )  +P.  1P )
15 enreceq 7677 . . . . . . . 8  |-  ( ( ( ( ( x  .P.  1P )  +P.  ( y  .P.  1P ) )  e.  P.  /\  ( ( x  .P.  1P )  +P.  ( y  .P.  1P ) )  e.  P. )  /\  ( 1P  e.  P.  /\  1P  e.  P. )
)  ->  ( [ <. ( ( x  .P.  1P )  +P.  ( y  .P.  1P ) ) ,  ( ( x  .P.  1P )  +P.  ( y  .P.  1P ) ) >. ]  ~R  =  [ <. 1P ,  1P >. ]  ~R  <->  ( (
( x  .P.  1P )  +P.  ( y  .P. 
1P ) )  +P. 
1P )  =  ( ( ( x  .P.  1P )  +P.  ( y  .P.  1P ) )  +P.  1P ) ) )
1614, 15mpbiri 167 . . . . . . 7  |-  ( ( ( ( ( x  .P.  1P )  +P.  ( y  .P.  1P ) )  e.  P.  /\  ( ( x  .P.  1P )  +P.  ( y  .P.  1P ) )  e.  P. )  /\  ( 1P  e.  P.  /\  1P  e.  P. )
)  ->  [ <. (
( x  .P.  1P )  +P.  ( y  .P. 
1P ) ) ,  ( ( x  .P.  1P )  +P.  ( y  .P.  1P ) )
>. ]  ~R  =  [ <. 1P ,  1P >. ]  ~R  )
1713, 16sylan 281 . . . . . 6  |-  ( ( ( ( x  e. 
P.  /\  y  e.  P. )  /\  (
x  e.  P.  /\  y  e.  P. )
)  /\  ( 1P  e.  P.  /\  1P  e.  P. ) )  ->  [ <. ( ( x  .P.  1P )  +P.  ( y  .P. 
1P ) ) ,  ( ( x  .P.  1P )  +P.  ( y  .P.  1P ) )
>. ]  ~R  =  [ <. 1P ,  1P >. ]  ~R  )
184, 4, 17mpanr12 436 . . . . 5  |-  ( ( ( x  e.  P.  /\  y  e.  P. )  /\  ( x  e.  P.  /\  y  e.  P. )
)  ->  [ <. (
( x  .P.  1P )  +P.  ( y  .P. 
1P ) ) ,  ( ( x  .P.  1P )  +P.  ( y  .P.  1P ) )
>. ]  ~R  =  [ <. 1P ,  1P >. ]  ~R  )
1918anidms 395 . . . 4  |-  ( ( x  e.  P.  /\  y  e.  P. )  ->  [ <. ( ( x  .P.  1P )  +P.  ( y  .P.  1P ) ) ,  ( ( x  .P.  1P )  +P.  ( y  .P. 
1P ) ) >. ]  ~R  =  [ <. 1P ,  1P >. ]  ~R  )
206, 19eqtrd 2198 . . 3  |-  ( ( x  e.  P.  /\  y  e.  P. )  ->  ( [ <. x ,  y >. ]  ~R  .R 
[ <. 1P ,  1P >. ]  ~R  )  =  [ <. 1P ,  1P >. ]  ~R  )
21 df-0r 7672 . . . 4  |-  0R  =  [ <. 1P ,  1P >. ]  ~R
2221oveq2i 5853 . . 3  |-  ( [
<. x ,  y >. ]  ~R  .R  0R )  =  ( [ <. x ,  y >. ]  ~R  .R 
[ <. 1P ,  1P >. ]  ~R  )
2320, 22, 213eqtr4g 2224 . 2  |-  ( ( x  e.  P.  /\  y  e.  P. )  ->  ( [ <. x ,  y >. ]  ~R  .R  0R )  =  0R )
241, 3, 23ecoptocl 6588 1  |-  ( A  e.  R.  ->  ( A  .R  0R )  =  0R )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1343    e. wcel 2136   <.cop 3579  (class class class)co 5842   [cec 6499   P.cnp 7232   1Pc1p 7233    +P. cpp 7234    .P. cmp 7235    ~R cer 7237   R.cnr 7238   0Rc0r 7239    .R cmr 7243
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-coll 4097  ax-sep 4100  ax-nul 4108  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-iinf 4565
This theorem depends on definitions:  df-bi 116  df-dc 825  df-3or 969  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-ral 2449  df-rex 2450  df-reu 2451  df-rab 2453  df-v 2728  df-sbc 2952  df-csb 3046  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-nul 3410  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-int 3825  df-iun 3868  df-br 3983  df-opab 4044  df-mpt 4045  df-tr 4081  df-eprel 4267  df-id 4271  df-po 4274  df-iso 4275  df-iord 4344  df-on 4346  df-suc 4349  df-iom 4568  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-fo 5194  df-f1o 5195  df-fv 5196  df-ov 5845  df-oprab 5846  df-mpo 5847  df-1st 6108  df-2nd 6109  df-recs 6273  df-irdg 6338  df-1o 6384  df-2o 6385  df-oadd 6388  df-omul 6389  df-er 6501  df-ec 6503  df-qs 6507  df-ni 7245  df-pli 7246  df-mi 7247  df-lti 7248  df-plpq 7285  df-mpq 7286  df-enq 7288  df-nqqs 7289  df-plqqs 7290  df-mqqs 7291  df-1nqqs 7292  df-rq 7293  df-ltnqqs 7294  df-enq0 7365  df-nq0 7366  df-0nq0 7367  df-plq0 7368  df-mq0 7369  df-inp 7407  df-i1p 7408  df-iplp 7409  df-imp 7410  df-enr 7667  df-nr 7668  df-mr 7670  df-0r 7672
This theorem is referenced by:  pn0sr  7712  mulresr  7779  axi2m1  7816  axcnre  7822
  Copyright terms: Public domain W3C validator