ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  00sr Unicode version

Theorem 00sr 7512
Description: A signed real times 0 is 0. (Contributed by NM, 10-Apr-1996.)
Assertion
Ref Expression
00sr  |-  ( A  e.  R.  ->  ( A  .R  0R )  =  0R )

Proof of Theorem 00sr
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-nr 7470 . 2  |-  R.  =  ( ( P.  X.  P. ) /.  ~R  )
2 oveq1 5735 . . 3  |-  ( [
<. x ,  y >. ]  ~R  =  A  -> 
( [ <. x ,  y >. ]  ~R  .R  0R )  =  ( A  .R  0R ) )
32eqeq1d 2123 . 2  |-  ( [
<. x ,  y >. ]  ~R  =  A  -> 
( ( [ <. x ,  y >. ]  ~R  .R  0R )  =  0R  <->  ( A  .R  0R )  =  0R ) )
4 1pr 7310 . . . . 5  |-  1P  e.  P.
5 mulsrpr 7489 . . . . 5  |-  ( ( ( x  e.  P.  /\  y  e.  P. )  /\  ( 1P  e.  P.  /\  1P  e.  P. )
)  ->  ( [ <. x ,  y >. ]  ~R  .R  [ <. 1P ,  1P >. ]  ~R  )  =  [ <. (
( x  .P.  1P )  +P.  ( y  .P. 
1P ) ) ,  ( ( x  .P.  1P )  +P.  ( y  .P.  1P ) )
>. ]  ~R  )
64, 4, 5mpanr12 433 . . . 4  |-  ( ( x  e.  P.  /\  y  e.  P. )  ->  ( [ <. x ,  y >. ]  ~R  .R 
[ <. 1P ,  1P >. ]  ~R  )  =  [ <. ( ( x  .P.  1P )  +P.  ( y  .P.  1P ) ) ,  ( ( x  .P.  1P )  +P.  ( y  .P. 
1P ) ) >. ]  ~R  )
7 mulclpr 7328 . . . . . . . . . 10  |-  ( ( x  e.  P.  /\  1P  e.  P. )  -> 
( x  .P.  1P )  e.  P. )
84, 7mpan2 419 . . . . . . . . 9  |-  ( x  e.  P.  ->  (
x  .P.  1P )  e.  P. )
9 mulclpr 7328 . . . . . . . . . 10  |-  ( ( y  e.  P.  /\  1P  e.  P. )  -> 
( y  .P.  1P )  e.  P. )
104, 9mpan2 419 . . . . . . . . 9  |-  ( y  e.  P.  ->  (
y  .P.  1P )  e.  P. )
11 addclpr 7293 . . . . . . . . 9  |-  ( ( ( x  .P.  1P )  e.  P.  /\  (
y  .P.  1P )  e.  P. )  ->  (
( x  .P.  1P )  +P.  ( y  .P. 
1P ) )  e. 
P. )
128, 10, 11syl2an 285 . . . . . . . 8  |-  ( ( x  e.  P.  /\  y  e.  P. )  ->  ( ( x  .P.  1P )  +P.  ( y  .P.  1P ) )  e.  P. )
1312, 12anim12i 334 . . . . . . 7  |-  ( ( ( x  e.  P.  /\  y  e.  P. )  /\  ( x  e.  P.  /\  y  e.  P. )
)  ->  ( (
( x  .P.  1P )  +P.  ( y  .P. 
1P ) )  e. 
P.  /\  ( (
x  .P.  1P )  +P.  ( y  .P.  1P ) )  e.  P. ) )
14 eqid 2115 . . . . . . . 8  |-  ( ( ( x  .P.  1P )  +P.  ( y  .P. 
1P ) )  +P. 
1P )  =  ( ( ( x  .P.  1P )  +P.  ( y  .P.  1P ) )  +P.  1P )
15 enreceq 7479 . . . . . . . 8  |-  ( ( ( ( ( x  .P.  1P )  +P.  ( y  .P.  1P ) )  e.  P.  /\  ( ( x  .P.  1P )  +P.  ( y  .P.  1P ) )  e.  P. )  /\  ( 1P  e.  P.  /\  1P  e.  P. )
)  ->  ( [ <. ( ( x  .P.  1P )  +P.  ( y  .P.  1P ) ) ,  ( ( x  .P.  1P )  +P.  ( y  .P.  1P ) ) >. ]  ~R  =  [ <. 1P ,  1P >. ]  ~R  <->  ( (
( x  .P.  1P )  +P.  ( y  .P. 
1P ) )  +P. 
1P )  =  ( ( ( x  .P.  1P )  +P.  ( y  .P.  1P ) )  +P.  1P ) ) )
1614, 15mpbiri 167 . . . . . . 7  |-  ( ( ( ( ( x  .P.  1P )  +P.  ( y  .P.  1P ) )  e.  P.  /\  ( ( x  .P.  1P )  +P.  ( y  .P.  1P ) )  e.  P. )  /\  ( 1P  e.  P.  /\  1P  e.  P. )
)  ->  [ <. (
( x  .P.  1P )  +P.  ( y  .P. 
1P ) ) ,  ( ( x  .P.  1P )  +P.  ( y  .P.  1P ) )
>. ]  ~R  =  [ <. 1P ,  1P >. ]  ~R  )
1713, 16sylan 279 . . . . . 6  |-  ( ( ( ( x  e. 
P.  /\  y  e.  P. )  /\  (
x  e.  P.  /\  y  e.  P. )
)  /\  ( 1P  e.  P.  /\  1P  e.  P. ) )  ->  [ <. ( ( x  .P.  1P )  +P.  ( y  .P. 
1P ) ) ,  ( ( x  .P.  1P )  +P.  ( y  .P.  1P ) )
>. ]  ~R  =  [ <. 1P ,  1P >. ]  ~R  )
184, 4, 17mpanr12 433 . . . . 5  |-  ( ( ( x  e.  P.  /\  y  e.  P. )  /\  ( x  e.  P.  /\  y  e.  P. )
)  ->  [ <. (
( x  .P.  1P )  +P.  ( y  .P. 
1P ) ) ,  ( ( x  .P.  1P )  +P.  ( y  .P.  1P ) )
>. ]  ~R  =  [ <. 1P ,  1P >. ]  ~R  )
1918anidms 392 . . . 4  |-  ( ( x  e.  P.  /\  y  e.  P. )  ->  [ <. ( ( x  .P.  1P )  +P.  ( y  .P.  1P ) ) ,  ( ( x  .P.  1P )  +P.  ( y  .P. 
1P ) ) >. ]  ~R  =  [ <. 1P ,  1P >. ]  ~R  )
206, 19eqtrd 2147 . . 3  |-  ( ( x  e.  P.  /\  y  e.  P. )  ->  ( [ <. x ,  y >. ]  ~R  .R 
[ <. 1P ,  1P >. ]  ~R  )  =  [ <. 1P ,  1P >. ]  ~R  )
21 df-0r 7474 . . . 4  |-  0R  =  [ <. 1P ,  1P >. ]  ~R
2221oveq2i 5739 . . 3  |-  ( [
<. x ,  y >. ]  ~R  .R  0R )  =  ( [ <. x ,  y >. ]  ~R  .R 
[ <. 1P ,  1P >. ]  ~R  )
2320, 22, 213eqtr4g 2172 . 2  |-  ( ( x  e.  P.  /\  y  e.  P. )  ->  ( [ <. x ,  y >. ]  ~R  .R  0R )  =  0R )
241, 3, 23ecoptocl 6470 1  |-  ( A  e.  R.  ->  ( A  .R  0R )  =  0R )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1314    e. wcel 1463   <.cop 3496  (class class class)co 5728   [cec 6381   P.cnp 7047   1Pc1p 7048    +P. cpp 7049    .P. cmp 7050    ~R cer 7052   R.cnr 7053   0Rc0r 7054    .R cmr 7058
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 586  ax-in2 587  ax-io 681  ax-5 1406  ax-7 1407  ax-gen 1408  ax-ie1 1452  ax-ie2 1453  ax-8 1465  ax-10 1466  ax-11 1467  ax-i12 1468  ax-bndl 1469  ax-4 1470  ax-13 1474  ax-14 1475  ax-17 1489  ax-i9 1493  ax-ial 1497  ax-i5r 1498  ax-ext 2097  ax-coll 4003  ax-sep 4006  ax-nul 4014  ax-pow 4058  ax-pr 4091  ax-un 4315  ax-setind 4412  ax-iinf 4462
This theorem depends on definitions:  df-bi 116  df-dc 803  df-3or 946  df-3an 947  df-tru 1317  df-fal 1320  df-nf 1420  df-sb 1719  df-eu 1978  df-mo 1979  df-clab 2102  df-cleq 2108  df-clel 2111  df-nfc 2244  df-ne 2283  df-ral 2395  df-rex 2396  df-reu 2397  df-rab 2399  df-v 2659  df-sbc 2879  df-csb 2972  df-dif 3039  df-un 3041  df-in 3043  df-ss 3050  df-nul 3330  df-pw 3478  df-sn 3499  df-pr 3500  df-op 3502  df-uni 3703  df-int 3738  df-iun 3781  df-br 3896  df-opab 3950  df-mpt 3951  df-tr 3987  df-eprel 4171  df-id 4175  df-po 4178  df-iso 4179  df-iord 4248  df-on 4250  df-suc 4253  df-iom 4465  df-xp 4505  df-rel 4506  df-cnv 4507  df-co 4508  df-dm 4509  df-rn 4510  df-res 4511  df-ima 4512  df-iota 5046  df-fun 5083  df-fn 5084  df-f 5085  df-f1 5086  df-fo 5087  df-f1o 5088  df-fv 5089  df-ov 5731  df-oprab 5732  df-mpo 5733  df-1st 5992  df-2nd 5993  df-recs 6156  df-irdg 6221  df-1o 6267  df-2o 6268  df-oadd 6271  df-omul 6272  df-er 6383  df-ec 6385  df-qs 6389  df-ni 7060  df-pli 7061  df-mi 7062  df-lti 7063  df-plpq 7100  df-mpq 7101  df-enq 7103  df-nqqs 7104  df-plqqs 7105  df-mqqs 7106  df-1nqqs 7107  df-rq 7108  df-ltnqqs 7109  df-enq0 7180  df-nq0 7181  df-0nq0 7182  df-plq0 7183  df-mq0 7184  df-inp 7222  df-i1p 7223  df-iplp 7224  df-imp 7225  df-enr 7469  df-nr 7470  df-mr 7472  df-0r 7474
This theorem is referenced by:  pn0sr  7514  mulresr  7573  axi2m1  7610  axcnre  7616
  Copyright terms: Public domain W3C validator