| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mulidnq | Unicode version | ||
| Description: Multiplication identity element for positive fractions. (Contributed by NM, 3-Mar-1996.) |
| Ref | Expression |
|---|---|
| mulidnq |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-nqqs 7531 |
. 2
| |
| 2 | oveq1 6007 |
. . 3
| |
| 3 | id 19 |
. . 3
| |
| 4 | 2, 3 | eqeq12d 2244 |
. 2
|
| 5 | df-1nqqs 7534 |
. . . . 5
| |
| 6 | 5 | oveq2i 6011 |
. . . 4
|
| 7 | 1pi 7498 |
. . . . 5
| |
| 8 | mulpipqqs 7556 |
. . . . 5
| |
| 9 | 7, 7, 8 | mpanr12 439 |
. . . 4
|
| 10 | 6, 9 | eqtrid 2274 |
. . 3
|
| 11 | mulcompig 7514 |
. . . . . . 7
| |
| 12 | 7, 11 | mpan 424 |
. . . . . 6
|
| 13 | 12 | adantr 276 |
. . . . 5
|
| 14 | mulcompig 7514 |
. . . . . . 7
| |
| 15 | 7, 14 | mpan 424 |
. . . . . 6
|
| 16 | 15 | adantl 277 |
. . . . 5
|
| 17 | 13, 16 | opeq12d 3864 |
. . . 4
|
| 18 | 17 | eceq1d 6714 |
. . 3
|
| 19 | mulcanenqec 7569 |
. . . 4
| |
| 20 | 7, 19 | mp3an1 1358 |
. . 3
|
| 21 | 10, 18, 20 | 3eqtr2d 2268 |
. 2
|
| 22 | 1, 4, 21 | ecoptocl 6767 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-coll 4198 ax-sep 4201 ax-nul 4209 ax-pow 4257 ax-pr 4292 ax-un 4523 ax-setind 4628 ax-iinf 4679 |
| This theorem depends on definitions: df-bi 117 df-dc 840 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-ral 2513 df-rex 2514 df-reu 2515 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-int 3923 df-iun 3966 df-br 4083 df-opab 4145 df-mpt 4146 df-tr 4182 df-id 4383 df-iord 4456 df-on 4458 df-suc 4461 df-iom 4682 df-xp 4724 df-rel 4725 df-cnv 4726 df-co 4727 df-dm 4728 df-rn 4729 df-res 4730 df-ima 4731 df-iota 5277 df-fun 5319 df-fn 5320 df-f 5321 df-f1 5322 df-fo 5323 df-f1o 5324 df-fv 5325 df-ov 6003 df-oprab 6004 df-mpo 6005 df-1st 6284 df-2nd 6285 df-recs 6449 df-irdg 6514 df-1o 6560 df-oadd 6564 df-omul 6565 df-er 6678 df-ec 6680 df-qs 6684 df-ni 7487 df-mi 7489 df-mpq 7528 df-enq 7530 df-nqqs 7531 df-mqqs 7533 df-1nqqs 7534 |
| This theorem is referenced by: recmulnqg 7574 rec1nq 7578 ltaddnq 7590 halfnqq 7593 prarloclemarch 7601 ltrnqg 7603 addnqprllem 7710 addnqprulem 7711 addnqprl 7712 addnqpru 7713 appdivnq 7746 prmuloc2 7750 mulnqprl 7751 mulnqpru 7752 1idprl 7773 1idpru 7774 recexprlem1ssl 7816 recexprlem1ssu 7817 |
| Copyright terms: Public domain | W3C validator |