ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mulidnq Unicode version

Theorem mulidnq 7572
Description: Multiplication identity element for positive fractions. (Contributed by NM, 3-Mar-1996.)
Assertion
Ref Expression
mulidnq  |-  ( A  e.  Q.  ->  ( A  .Q  1Q )  =  A )

Proof of Theorem mulidnq
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-nqqs 7531 . 2  |-  Q.  =  ( ( N.  X.  N. ) /.  ~Q  )
2 oveq1 6007 . . 3  |-  ( [
<. x ,  y >. ]  ~Q  =  A  -> 
( [ <. x ,  y >. ]  ~Q  .Q  1Q )  =  ( A  .Q  1Q ) )
3 id 19 . . 3  |-  ( [
<. x ,  y >. ]  ~Q  =  A  ->  [ <. x ,  y
>. ]  ~Q  =  A )
42, 3eqeq12d 2244 . 2  |-  ( [
<. x ,  y >. ]  ~Q  =  A  -> 
( ( [ <. x ,  y >. ]  ~Q  .Q  1Q )  =  [ <. x ,  y >. ]  ~Q  <->  ( A  .Q  1Q )  =  A
) )
5 df-1nqqs 7534 . . . . 5  |-  1Q  =  [ <. 1o ,  1o >. ]  ~Q
65oveq2i 6011 . . . 4  |-  ( [
<. x ,  y >. ]  ~Q  .Q  1Q )  =  ( [ <. x ,  y >. ]  ~Q  .Q  [ <. 1o ,  1o >. ]  ~Q  )
7 1pi 7498 . . . . 5  |-  1o  e.  N.
8 mulpipqqs 7556 . . . . 5  |-  ( ( ( x  e.  N.  /\  y  e.  N. )  /\  ( 1o  e.  N.  /\  1o  e.  N. )
)  ->  ( [ <. x ,  y >. ]  ~Q  .Q  [ <. 1o ,  1o >. ]  ~Q  )  =  [ <. (
x  .N  1o ) ,  ( y  .N  1o ) >. ]  ~Q  )
97, 7, 8mpanr12 439 . . . 4  |-  ( ( x  e.  N.  /\  y  e.  N. )  ->  ( [ <. x ,  y >. ]  ~Q  .Q  [ <. 1o ,  1o >. ]  ~Q  )  =  [ <. ( x  .N  1o ) ,  ( y  .N  1o ) >. ]  ~Q  )
106, 9eqtrid 2274 . . 3  |-  ( ( x  e.  N.  /\  y  e.  N. )  ->  ( [ <. x ,  y >. ]  ~Q  .Q  1Q )  =  [ <. ( x  .N  1o ) ,  ( y  .N  1o ) >. ]  ~Q  )
11 mulcompig 7514 . . . . . . 7  |-  ( ( 1o  e.  N.  /\  x  e.  N. )  ->  ( 1o  .N  x
)  =  ( x  .N  1o ) )
127, 11mpan 424 . . . . . 6  |-  ( x  e.  N.  ->  ( 1o  .N  x )  =  ( x  .N  1o ) )
1312adantr 276 . . . . 5  |-  ( ( x  e.  N.  /\  y  e.  N. )  ->  ( 1o  .N  x
)  =  ( x  .N  1o ) )
14 mulcompig 7514 . . . . . . 7  |-  ( ( 1o  e.  N.  /\  y  e.  N. )  ->  ( 1o  .N  y
)  =  ( y  .N  1o ) )
157, 14mpan 424 . . . . . 6  |-  ( y  e.  N.  ->  ( 1o  .N  y )  =  ( y  .N  1o ) )
1615adantl 277 . . . . 5  |-  ( ( x  e.  N.  /\  y  e.  N. )  ->  ( 1o  .N  y
)  =  ( y  .N  1o ) )
1713, 16opeq12d 3864 . . . 4  |-  ( ( x  e.  N.  /\  y  e.  N. )  -> 
<. ( 1o  .N  x
) ,  ( 1o 
.N  y ) >.  =  <. ( x  .N  1o ) ,  ( y  .N  1o ) >.
)
1817eceq1d 6714 . . 3  |-  ( ( x  e.  N.  /\  y  e.  N. )  ->  [ <. ( 1o  .N  x ) ,  ( 1o  .N  y )
>. ]  ~Q  =  [ <. ( x  .N  1o ) ,  ( y  .N  1o ) >. ]  ~Q  )
19 mulcanenqec 7569 . . . 4  |-  ( ( 1o  e.  N.  /\  x  e.  N.  /\  y  e.  N. )  ->  [ <. ( 1o  .N  x ) ,  ( 1o  .N  y ) >. ]  ~Q  =  [ <. x ,  y
>. ]  ~Q  )
207, 19mp3an1 1358 . . 3  |-  ( ( x  e.  N.  /\  y  e.  N. )  ->  [ <. ( 1o  .N  x ) ,  ( 1o  .N  y )
>. ]  ~Q  =  [ <. x ,  y >. ]  ~Q  )
2110, 18, 203eqtr2d 2268 . 2  |-  ( ( x  e.  N.  /\  y  e.  N. )  ->  ( [ <. x ,  y >. ]  ~Q  .Q  1Q )  =  [ <. x ,  y >. ]  ~Q  )
221, 4, 21ecoptocl 6767 1  |-  ( A  e.  Q.  ->  ( A  .Q  1Q )  =  A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1395    e. wcel 2200   <.cop 3669  (class class class)co 6000   1oc1o 6553   [cec 6676   N.cnpi 7455    .N cmi 7457    ~Q ceq 7462   Q.cnq 7463   1Qc1q 7464    .Q cmq 7466
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4198  ax-sep 4201  ax-nul 4209  ax-pow 4257  ax-pr 4292  ax-un 4523  ax-setind 4628  ax-iinf 4679
This theorem depends on definitions:  df-bi 117  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-iun 3966  df-br 4083  df-opab 4145  df-mpt 4146  df-tr 4182  df-id 4383  df-iord 4456  df-on 4458  df-suc 4461  df-iom 4682  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-res 4730  df-ima 4731  df-iota 5277  df-fun 5319  df-fn 5320  df-f 5321  df-f1 5322  df-fo 5323  df-f1o 5324  df-fv 5325  df-ov 6003  df-oprab 6004  df-mpo 6005  df-1st 6284  df-2nd 6285  df-recs 6449  df-irdg 6514  df-1o 6560  df-oadd 6564  df-omul 6565  df-er 6678  df-ec 6680  df-qs 6684  df-ni 7487  df-mi 7489  df-mpq 7528  df-enq 7530  df-nqqs 7531  df-mqqs 7533  df-1nqqs 7534
This theorem is referenced by:  recmulnqg  7574  rec1nq  7578  ltaddnq  7590  halfnqq  7593  prarloclemarch  7601  ltrnqg  7603  addnqprllem  7710  addnqprulem  7711  addnqprl  7712  addnqpru  7713  appdivnq  7746  prmuloc2  7750  mulnqprl  7751  mulnqpru  7752  1idprl  7773  1idpru  7774  recexprlem1ssl  7816  recexprlem1ssu  7817
  Copyright terms: Public domain W3C validator