ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elbl3ps Unicode version

Theorem elbl3ps 12602
Description: Membership in a ball, with reversed distance function arguments. (Contributed by NM, 10-Nov-2007.)
Assertion
Ref Expression
elbl3ps  |-  ( ( ( D  e.  (PsMet `  X )  /\  R  e.  RR* )  /\  ( P  e.  X  /\  A  e.  X )
)  ->  ( A  e.  ( P ( ball `  D ) R )  <-> 
( A D P )  <  R ) )

Proof of Theorem elbl3ps
StepHypRef Expression
1 elbl2ps 12600 . 2  |-  ( ( ( D  e.  (PsMet `  X )  /\  R  e.  RR* )  /\  ( P  e.  X  /\  A  e.  X )
)  ->  ( A  e.  ( P ( ball `  D ) R )  <-> 
( P D A )  <  R ) )
2 psmetsym 12537 . . . . 5  |-  ( ( D  e.  (PsMet `  X )  /\  P  e.  X  /\  A  e.  X )  ->  ( P D A )  =  ( A D P ) )
323expb 1183 . . . 4  |-  ( ( D  e.  (PsMet `  X )  /\  ( P  e.  X  /\  A  e.  X )
)  ->  ( P D A )  =  ( A D P ) )
43adantlr 469 . . 3  |-  ( ( ( D  e.  (PsMet `  X )  /\  R  e.  RR* )  /\  ( P  e.  X  /\  A  e.  X )
)  ->  ( P D A )  =  ( A D P ) )
54breq1d 3947 . 2  |-  ( ( ( D  e.  (PsMet `  X )  /\  R  e.  RR* )  /\  ( P  e.  X  /\  A  e.  X )
)  ->  ( ( P D A )  < 
R  <->  ( A D P )  <  R
) )
61, 5bitrd 187 1  |-  ( ( ( D  e.  (PsMet `  X )  /\  R  e.  RR* )  /\  ( P  e.  X  /\  A  e.  X )
)  ->  ( A  e.  ( P ( ball `  D ) R )  <-> 
( A D P )  <  R ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1332    e. wcel 1481   class class class wbr 3937   ` cfv 5131  (class class class)co 5782   RR*cxr 7823    < clt 7824  PsMetcpsmet 12187   ballcbl 12190
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-sep 4054  ax-pow 4106  ax-pr 4139  ax-un 4363  ax-setind 4460  ax-cnex 7735  ax-resscn 7736  ax-1re 7738  ax-addrcl 7741  ax-0id 7752  ax-rnegex 7753  ax-pre-ltirr 7756  ax-pre-apti 7759
This theorem depends on definitions:  df-bi 116  df-dc 821  df-3or 964  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ne 2310  df-nel 2405  df-ral 2422  df-rex 2423  df-rab 2426  df-v 2691  df-sbc 2914  df-csb 3008  df-dif 3078  df-un 3080  df-in 3082  df-ss 3089  df-if 3480  df-pw 3517  df-sn 3538  df-pr 3539  df-op 3541  df-uni 3745  df-iun 3823  df-br 3938  df-opab 3998  df-mpt 3999  df-id 4223  df-xp 4553  df-rel 4554  df-cnv 4555  df-co 4556  df-dm 4557  df-rn 4558  df-res 4559  df-ima 4560  df-iota 5096  df-fun 5133  df-fn 5134  df-f 5135  df-fv 5139  df-ov 5785  df-oprab 5786  df-mpo 5787  df-1st 6046  df-2nd 6047  df-map 6552  df-pnf 7826  df-mnf 7827  df-xr 7828  df-ltxr 7829  df-le 7830  df-xadd 9590  df-psmet 12195  df-bl 12198
This theorem is referenced by:  blcomps  12604
  Copyright terms: Public domain W3C validator