ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elbl3ps GIF version

Theorem elbl3ps 14784
Description: Membership in a ball, with reversed distance function arguments. (Contributed by NM, 10-Nov-2007.)
Assertion
Ref Expression
elbl3ps (((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑅 ∈ ℝ*) ∧ (𝑃𝑋𝐴𝑋)) → (𝐴 ∈ (𝑃(ball‘𝐷)𝑅) ↔ (𝐴𝐷𝑃) < 𝑅))

Proof of Theorem elbl3ps
StepHypRef Expression
1 elbl2ps 14782 . 2 (((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑅 ∈ ℝ*) ∧ (𝑃𝑋𝐴𝑋)) → (𝐴 ∈ (𝑃(ball‘𝐷)𝑅) ↔ (𝑃𝐷𝐴) < 𝑅))
2 psmetsym 14719 . . . . 5 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑃𝑋𝐴𝑋) → (𝑃𝐷𝐴) = (𝐴𝐷𝑃))
323expb 1206 . . . 4 ((𝐷 ∈ (PsMet‘𝑋) ∧ (𝑃𝑋𝐴𝑋)) → (𝑃𝐷𝐴) = (𝐴𝐷𝑃))
43adantlr 477 . . 3 (((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑅 ∈ ℝ*) ∧ (𝑃𝑋𝐴𝑋)) → (𝑃𝐷𝐴) = (𝐴𝐷𝑃))
54breq1d 4053 . 2 (((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑅 ∈ ℝ*) ∧ (𝑃𝑋𝐴𝑋)) → ((𝑃𝐷𝐴) < 𝑅 ↔ (𝐴𝐷𝑃) < 𝑅))
61, 5bitrd 188 1 (((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑅 ∈ ℝ*) ∧ (𝑃𝑋𝐴𝑋)) → (𝐴 ∈ (𝑃(ball‘𝐷)𝑅) ↔ (𝐴𝐷𝑃) < 𝑅))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1372  wcel 2175   class class class wbr 4043  cfv 5268  (class class class)co 5934  *cxr 8088   < clt 8089  PsMetcpsmet 14215  ballcbl 14218
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-13 2177  ax-14 2178  ax-ext 2186  ax-sep 4161  ax-pow 4217  ax-pr 4252  ax-un 4478  ax-setind 4583  ax-cnex 7998  ax-resscn 7999  ax-1re 8001  ax-addrcl 8004  ax-0id 8015  ax-rnegex 8016  ax-pre-ltirr 8019  ax-pre-apti 8022
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1375  df-fal 1378  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ne 2376  df-nel 2471  df-ral 2488  df-rex 2489  df-rab 2492  df-v 2773  df-sbc 2998  df-csb 3093  df-dif 3167  df-un 3169  df-in 3171  df-ss 3178  df-if 3571  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-iun 3928  df-br 4044  df-opab 4105  df-mpt 4106  df-id 4338  df-xp 4679  df-rel 4680  df-cnv 4681  df-co 4682  df-dm 4683  df-rn 4684  df-res 4685  df-ima 4686  df-iota 5229  df-fun 5270  df-fn 5271  df-f 5272  df-fv 5276  df-ov 5937  df-oprab 5938  df-mpo 5939  df-1st 6216  df-2nd 6217  df-map 6727  df-pnf 8091  df-mnf 8092  df-xr 8093  df-ltxr 8094  df-le 8095  df-xadd 9877  df-psmet 14223  df-bl 14226
This theorem is referenced by:  blcomps  14786
  Copyright terms: Public domain W3C validator