ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elbl2ps Unicode version

Theorem elbl2ps 13042
Description: Membership in a ball. (Contributed by NM, 9-Mar-2007.) (Revised by Thierry Arnoux, 11-Mar-2018.)
Assertion
Ref Expression
elbl2ps  |-  ( ( ( D  e.  (PsMet `  X )  /\  R  e.  RR* )  /\  ( P  e.  X  /\  A  e.  X )
)  ->  ( A  e.  ( P ( ball `  D ) R )  <-> 
( P D A )  <  R ) )

Proof of Theorem elbl2ps
StepHypRef Expression
1 elblps 13040 . . . . 5  |-  ( ( D  e.  (PsMet `  X )  /\  P  e.  X  /\  R  e. 
RR* )  ->  ( A  e.  ( P
( ball `  D ) R )  <->  ( A  e.  X  /\  ( P D A )  < 
R ) ) )
213expa 1193 . . . 4  |-  ( ( ( D  e.  (PsMet `  X )  /\  P  e.  X )  /\  R  e.  RR* )  ->  ( A  e.  ( P
( ball `  D ) R )  <->  ( A  e.  X  /\  ( P D A )  < 
R ) ) )
32an32s 558 . . 3  |-  ( ( ( D  e.  (PsMet `  X )  /\  R  e.  RR* )  /\  P  e.  X )  ->  ( A  e.  ( P
( ball `  D ) R )  <->  ( A  e.  X  /\  ( P D A )  < 
R ) ) )
43adantrr 471 . 2  |-  ( ( ( D  e.  (PsMet `  X )  /\  R  e.  RR* )  /\  ( P  e.  X  /\  A  e.  X )
)  ->  ( A  e.  ( P ( ball `  D ) R )  <-> 
( A  e.  X  /\  ( P D A )  <  R ) ) )
5 simprr 522 . . 3  |-  ( ( ( D  e.  (PsMet `  X )  /\  R  e.  RR* )  /\  ( P  e.  X  /\  A  e.  X )
)  ->  A  e.  X )
65biantrurd 303 . 2  |-  ( ( ( D  e.  (PsMet `  X )  /\  R  e.  RR* )  /\  ( P  e.  X  /\  A  e.  X )
)  ->  ( ( P D A )  < 
R  <->  ( A  e.  X  /\  ( P D A )  < 
R ) ) )
74, 6bitr4d 190 1  |-  ( ( ( D  e.  (PsMet `  X )  /\  R  e.  RR* )  /\  ( P  e.  X  /\  A  e.  X )
)  ->  ( A  e.  ( P ( ball `  D ) R )  <-> 
( P D A )  <  R ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    e. wcel 2136   class class class wbr 3982   ` cfv 5188  (class class class)co 5842   RR*cxr 7932    < clt 7933  PsMetcpsmet 12629   ballcbl 12632
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-cnex 7844  ax-resscn 7845
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-ral 2449  df-rex 2450  df-rab 2453  df-v 2728  df-sbc 2952  df-csb 3046  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-iun 3868  df-br 3983  df-opab 4044  df-mpt 4045  df-id 4271  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-fv 5196  df-ov 5845  df-oprab 5846  df-mpo 5847  df-1st 6108  df-2nd 6109  df-map 6616  df-pnf 7935  df-mnf 7936  df-xr 7937  df-psmet 12637  df-bl 12640
This theorem is referenced by:  elbl3ps  13044  blcomps  13046
  Copyright terms: Public domain W3C validator