| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > psmetsym | Unicode version | ||
| Description: The distance function of a pseudometric is symmetrical. (Contributed by Thierry Arnoux, 7-Feb-2018.) |
| Ref | Expression |
|---|---|
| psmetsym |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp1 1000 |
. . . 4
| |
| 2 | simp3 1002 |
. . . 4
| |
| 3 | simp2 1001 |
. . . 4
| |
| 4 | psmettri2 14875 |
. . . 4
| |
| 5 | 1, 2, 3, 2, 4 | syl13anc 1252 |
. . 3
|
| 6 | psmet0 14874 |
. . . . . 6
| |
| 7 | 6 | 3adant2 1019 |
. . . . 5
|
| 8 | 7 | oveq2d 5973 |
. . . 4
|
| 9 | psmetcl 14873 |
. . . . . 6
| |
| 10 | xaddid1 10004 |
. . . . . 6
| |
| 11 | 9, 10 | syl 14 |
. . . . 5
|
| 12 | 11 | 3com23 1212 |
. . . 4
|
| 13 | 8, 12 | eqtrd 2239 |
. . 3
|
| 14 | 5, 13 | breqtrd 4077 |
. 2
|
| 15 | psmettri2 14875 |
. . . 4
| |
| 16 | 1, 3, 2, 3, 15 | syl13anc 1252 |
. . 3
|
| 17 | psmet0 14874 |
. . . . . 6
| |
| 18 | 17 | 3adant3 1020 |
. . . . 5
|
| 19 | 18 | oveq2d 5973 |
. . . 4
|
| 20 | psmetcl 14873 |
. . . . 5
| |
| 21 | xaddid1 10004 |
. . . . 5
| |
| 22 | 20, 21 | syl 14 |
. . . 4
|
| 23 | 19, 22 | eqtrd 2239 |
. . 3
|
| 24 | 16, 23 | breqtrd 4077 |
. 2
|
| 25 | 9 | 3com23 1212 |
. . 3
|
| 26 | xrletri3 9946 |
. . 3
| |
| 27 | 20, 25, 26 | syl2anc 411 |
. 2
|
| 28 | 14, 24, 27 | mpbir2and 947 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-sep 4170 ax-pow 4226 ax-pr 4261 ax-un 4488 ax-setind 4593 ax-cnex 8036 ax-resscn 8037 ax-1re 8039 ax-addrcl 8042 ax-0id 8053 ax-rnegex 8054 ax-pre-ltirr 8057 ax-pre-apti 8060 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-nel 2473 df-ral 2490 df-rex 2491 df-rab 2494 df-v 2775 df-sbc 3003 df-csb 3098 df-dif 3172 df-un 3174 df-in 3176 df-ss 3183 df-if 3576 df-pw 3623 df-sn 3644 df-pr 3645 df-op 3647 df-uni 3857 df-br 4052 df-opab 4114 df-mpt 4115 df-id 4348 df-xp 4689 df-rel 4690 df-cnv 4691 df-co 4692 df-dm 4693 df-rn 4694 df-res 4695 df-ima 4696 df-iota 5241 df-fun 5282 df-fn 5283 df-f 5284 df-fv 5288 df-ov 5960 df-oprab 5961 df-mpo 5962 df-map 6750 df-pnf 8129 df-mnf 8130 df-xr 8131 df-ltxr 8132 df-le 8133 df-xadd 9915 df-psmet 14380 |
| This theorem is referenced by: psmettri 14877 distspace 14882 elbl3ps 14941 blssps 14974 |
| Copyright terms: Public domain | W3C validator |