ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  psmetsym Unicode version

Theorem psmetsym 14997
Description: The distance function of a pseudometric is symmetrical. (Contributed by Thierry Arnoux, 7-Feb-2018.)
Assertion
Ref Expression
psmetsym  |-  ( ( D  e.  (PsMet `  X )  /\  A  e.  X  /\  B  e.  X )  ->  ( A D B )  =  ( B D A ) )

Proof of Theorem psmetsym
StepHypRef Expression
1 simp1 1021 . . . 4  |-  ( ( D  e.  (PsMet `  X )  /\  A  e.  X  /\  B  e.  X )  ->  D  e.  (PsMet `  X )
)
2 simp3 1023 . . . 4  |-  ( ( D  e.  (PsMet `  X )  /\  A  e.  X  /\  B  e.  X )  ->  B  e.  X )
3 simp2 1022 . . . 4  |-  ( ( D  e.  (PsMet `  X )  /\  A  e.  X  /\  B  e.  X )  ->  A  e.  X )
4 psmettri2 14996 . . . 4  |-  ( ( D  e.  (PsMet `  X )  /\  ( B  e.  X  /\  A  e.  X  /\  B  e.  X )
)  ->  ( A D B )  <_  (
( B D A ) +e ( B D B ) ) )
51, 2, 3, 2, 4syl13anc 1273 . . 3  |-  ( ( D  e.  (PsMet `  X )  /\  A  e.  X  /\  B  e.  X )  ->  ( A D B )  <_ 
( ( B D A ) +e
( B D B ) ) )
6 psmet0 14995 . . . . . 6  |-  ( ( D  e.  (PsMet `  X )  /\  B  e.  X )  ->  ( B D B )  =  0 )
763adant2 1040 . . . . 5  |-  ( ( D  e.  (PsMet `  X )  /\  A  e.  X  /\  B  e.  X )  ->  ( B D B )  =  0 )
87oveq2d 6016 . . . 4  |-  ( ( D  e.  (PsMet `  X )  /\  A  e.  X  /\  B  e.  X )  ->  (
( B D A ) +e ( B D B ) )  =  ( ( B D A ) +e 0 ) )
9 psmetcl 14994 . . . . . 6  |-  ( ( D  e.  (PsMet `  X )  /\  B  e.  X  /\  A  e.  X )  ->  ( B D A )  e. 
RR* )
10 xaddid1 10054 . . . . . 6  |-  ( ( B D A )  e.  RR*  ->  ( ( B D A ) +e 0 )  =  ( B D A ) )
119, 10syl 14 . . . . 5  |-  ( ( D  e.  (PsMet `  X )  /\  B  e.  X  /\  A  e.  X )  ->  (
( B D A ) +e 0 )  =  ( B D A ) )
12113com23 1233 . . . 4  |-  ( ( D  e.  (PsMet `  X )  /\  A  e.  X  /\  B  e.  X )  ->  (
( B D A ) +e 0 )  =  ( B D A ) )
138, 12eqtrd 2262 . . 3  |-  ( ( D  e.  (PsMet `  X )  /\  A  e.  X  /\  B  e.  X )  ->  (
( B D A ) +e ( B D B ) )  =  ( B D A ) )
145, 13breqtrd 4108 . 2  |-  ( ( D  e.  (PsMet `  X )  /\  A  e.  X  /\  B  e.  X )  ->  ( A D B )  <_ 
( B D A ) )
15 psmettri2 14996 . . . 4  |-  ( ( D  e.  (PsMet `  X )  /\  ( A  e.  X  /\  B  e.  X  /\  A  e.  X )
)  ->  ( B D A )  <_  (
( A D B ) +e ( A D A ) ) )
161, 3, 2, 3, 15syl13anc 1273 . . 3  |-  ( ( D  e.  (PsMet `  X )  /\  A  e.  X  /\  B  e.  X )  ->  ( B D A )  <_ 
( ( A D B ) +e
( A D A ) ) )
17 psmet0 14995 . . . . . 6  |-  ( ( D  e.  (PsMet `  X )  /\  A  e.  X )  ->  ( A D A )  =  0 )
18173adant3 1041 . . . . 5  |-  ( ( D  e.  (PsMet `  X )  /\  A  e.  X  /\  B  e.  X )  ->  ( A D A )  =  0 )
1918oveq2d 6016 . . . 4  |-  ( ( D  e.  (PsMet `  X )  /\  A  e.  X  /\  B  e.  X )  ->  (
( A D B ) +e ( A D A ) )  =  ( ( A D B ) +e 0 ) )
20 psmetcl 14994 . . . . 5  |-  ( ( D  e.  (PsMet `  X )  /\  A  e.  X  /\  B  e.  X )  ->  ( A D B )  e. 
RR* )
21 xaddid1 10054 . . . . 5  |-  ( ( A D B )  e.  RR*  ->  ( ( A D B ) +e 0 )  =  ( A D B ) )
2220, 21syl 14 . . . 4  |-  ( ( D  e.  (PsMet `  X )  /\  A  e.  X  /\  B  e.  X )  ->  (
( A D B ) +e 0 )  =  ( A D B ) )
2319, 22eqtrd 2262 . . 3  |-  ( ( D  e.  (PsMet `  X )  /\  A  e.  X  /\  B  e.  X )  ->  (
( A D B ) +e ( A D A ) )  =  ( A D B ) )
2416, 23breqtrd 4108 . 2  |-  ( ( D  e.  (PsMet `  X )  /\  A  e.  X  /\  B  e.  X )  ->  ( B D A )  <_ 
( A D B ) )
2593com23 1233 . . 3  |-  ( ( D  e.  (PsMet `  X )  /\  A  e.  X  /\  B  e.  X )  ->  ( B D A )  e. 
RR* )
26 xrletri3 9996 . . 3  |-  ( ( ( A D B )  e.  RR*  /\  ( B D A )  e. 
RR* )  ->  (
( A D B )  =  ( B D A )  <->  ( ( A D B )  <_ 
( B D A )  /\  ( B D A )  <_ 
( A D B ) ) ) )
2720, 25, 26syl2anc 411 . 2  |-  ( ( D  e.  (PsMet `  X )  /\  A  e.  X  /\  B  e.  X )  ->  (
( A D B )  =  ( B D A )  <->  ( ( A D B )  <_ 
( B D A )  /\  ( B D A )  <_ 
( A D B ) ) ) )
2814, 24, 27mpbir2and 950 1  |-  ( ( D  e.  (PsMet `  X )  /\  A  e.  X  /\  B  e.  X )  ->  ( A D B )  =  ( B D A ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 1002    = wceq 1395    e. wcel 2200   class class class wbr 4082   ` cfv 5317  (class class class)co 6000   0cc0 7995   RR*cxr 8176    <_ cle 8178   +ecxad 9962  PsMetcpsmet 14493
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-pow 4257  ax-pr 4292  ax-un 4523  ax-setind 4628  ax-cnex 8086  ax-resscn 8087  ax-1re 8089  ax-addrcl 8092  ax-0id 8103  ax-rnegex 8104  ax-pre-ltirr 8107  ax-pre-apti 8110
This theorem depends on definitions:  df-bi 117  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-if 3603  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-br 4083  df-opab 4145  df-mpt 4146  df-id 4383  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-res 4730  df-ima 4731  df-iota 5277  df-fun 5319  df-fn 5320  df-f 5321  df-fv 5325  df-ov 6003  df-oprab 6004  df-mpo 6005  df-map 6795  df-pnf 8179  df-mnf 8180  df-xr 8181  df-ltxr 8182  df-le 8183  df-xadd 9965  df-psmet 14501
This theorem is referenced by:  psmettri  14998  distspace  15003  elbl3ps  15062  blssps  15095
  Copyright terms: Public domain W3C validator