| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > psmetsym | Unicode version | ||
| Description: The distance function of a pseudometric is symmetrical. (Contributed by Thierry Arnoux, 7-Feb-2018.) |
| Ref | Expression |
|---|---|
| psmetsym |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp1 999 |
. . . 4
| |
| 2 | simp3 1001 |
. . . 4
| |
| 3 | simp2 1000 |
. . . 4
| |
| 4 | psmettri2 14742 |
. . . 4
| |
| 5 | 1, 2, 3, 2, 4 | syl13anc 1251 |
. . 3
|
| 6 | psmet0 14741 |
. . . . . 6
| |
| 7 | 6 | 3adant2 1018 |
. . . . 5
|
| 8 | 7 | oveq2d 5959 |
. . . 4
|
| 9 | psmetcl 14740 |
. . . . . 6
| |
| 10 | xaddid1 9983 |
. . . . . 6
| |
| 11 | 9, 10 | syl 14 |
. . . . 5
|
| 12 | 11 | 3com23 1211 |
. . . 4
|
| 13 | 8, 12 | eqtrd 2237 |
. . 3
|
| 14 | 5, 13 | breqtrd 4069 |
. 2
|
| 15 | psmettri2 14742 |
. . . 4
| |
| 16 | 1, 3, 2, 3, 15 | syl13anc 1251 |
. . 3
|
| 17 | psmet0 14741 |
. . . . . 6
| |
| 18 | 17 | 3adant3 1019 |
. . . . 5
|
| 19 | 18 | oveq2d 5959 |
. . . 4
|
| 20 | psmetcl 14740 |
. . . . 5
| |
| 21 | xaddid1 9983 |
. . . . 5
| |
| 22 | 20, 21 | syl 14 |
. . . 4
|
| 23 | 19, 22 | eqtrd 2237 |
. . 3
|
| 24 | 16, 23 | breqtrd 4069 |
. 2
|
| 25 | 9 | 3com23 1211 |
. . 3
|
| 26 | xrletri3 9925 |
. . 3
| |
| 27 | 20, 25, 26 | syl2anc 411 |
. 2
|
| 28 | 14, 24, 27 | mpbir2and 946 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-13 2177 ax-14 2178 ax-ext 2186 ax-sep 4161 ax-pow 4217 ax-pr 4252 ax-un 4479 ax-setind 4584 ax-cnex 8015 ax-resscn 8016 ax-1re 8018 ax-addrcl 8021 ax-0id 8032 ax-rnegex 8033 ax-pre-ltirr 8036 ax-pre-apti 8039 |
| This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1375 df-fal 1378 df-nf 1483 df-sb 1785 df-eu 2056 df-mo 2057 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ne 2376 df-nel 2471 df-ral 2488 df-rex 2489 df-rab 2492 df-v 2773 df-sbc 2998 df-csb 3093 df-dif 3167 df-un 3169 df-in 3171 df-ss 3178 df-if 3571 df-pw 3617 df-sn 3638 df-pr 3639 df-op 3641 df-uni 3850 df-br 4044 df-opab 4105 df-mpt 4106 df-id 4339 df-xp 4680 df-rel 4681 df-cnv 4682 df-co 4683 df-dm 4684 df-rn 4685 df-res 4686 df-ima 4687 df-iota 5231 df-fun 5272 df-fn 5273 df-f 5274 df-fv 5278 df-ov 5946 df-oprab 5947 df-mpo 5948 df-map 6736 df-pnf 8108 df-mnf 8109 df-xr 8110 df-ltxr 8111 df-le 8112 df-xadd 9894 df-psmet 14247 |
| This theorem is referenced by: psmettri 14744 distspace 14749 elbl3ps 14808 blssps 14841 |
| Copyright terms: Public domain | W3C validator |