ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elioo4g Unicode version

Theorem elioo4g 9870
Description: Membership in an open interval of extended reals. (Contributed by NM, 8-Jun-2007.) (Revised by Mario Carneiro, 28-Apr-2015.)
Assertion
Ref Expression
elioo4g  |-  ( C  e.  ( A (,) B )  <->  ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e.  RR )  /\  ( A  <  C  /\  C  <  B ) ) )

Proof of Theorem elioo4g
StepHypRef Expression
1 eliooxr 9863 . . . . 5  |-  ( C  e.  ( A (,) B )  ->  ( A  e.  RR*  /\  B  e.  RR* ) )
2 elioore 9848 . . . . 5  |-  ( C  e.  ( A (,) B )  ->  C  e.  RR )
31, 2jca 304 . . . 4  |-  ( C  e.  ( A (,) B )  ->  (
( A  e.  RR*  /\  B  e.  RR* )  /\  C  e.  RR ) )
4 df-3an 970 . . . 4  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e.  RR )  <->  ( ( A  e.  RR*  /\  B  e.  RR* )  /\  C  e.  RR ) )
53, 4sylibr 133 . . 3  |-  ( C  e.  ( A (,) B )  ->  ( A  e.  RR*  /\  B  e.  RR*  /\  C  e.  RR ) )
6 eliooord 9864 . . 3  |-  ( C  e.  ( A (,) B )  ->  ( A  <  C  /\  C  <  B ) )
75, 6jca 304 . 2  |-  ( C  e.  ( A (,) B )  ->  (
( A  e.  RR*  /\  B  e.  RR*  /\  C  e.  RR )  /\  ( A  <  C  /\  C  <  B ) ) )
8 rexr 7944 . . . . 5  |-  ( C  e.  RR  ->  C  e.  RR* )
983anim3i 1177 . . . 4  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e.  RR )  ->  ( A  e.  RR*  /\  B  e.  RR*  /\  C  e. 
RR* ) )
109anim1i 338 . . 3  |-  ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e.  RR )  /\  ( A  <  C  /\  C  <  B ) )  -> 
( ( A  e. 
RR*  /\  B  e.  RR* 
/\  C  e.  RR* )  /\  ( A  < 
C  /\  C  <  B ) ) )
11 elioo3g 9846 . . 3  |-  ( C  e.  ( A (,) B )  <->  ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e. 
RR* )  /\  ( A  <  C  /\  C  <  B ) ) )
1210, 11sylibr 133 . 2  |-  ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e.  RR )  /\  ( A  <  C  /\  C  <  B ) )  ->  C  e.  ( A (,) B ) )
137, 12impbii 125 1  |-  ( C  e.  ( A (,) B )  <->  ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e.  RR )  /\  ( A  <  C  /\  C  <  B ) ) )
Colors of variables: wff set class
Syntax hints:    /\ wa 103    <-> wb 104    /\ w3a 968    e. wcel 2136   class class class wbr 3982  (class class class)co 5842   RRcr 7752   RR*cxr 7932    < clt 7933   (,)cioo 9824
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-cnex 7844  ax-resscn 7845  ax-pre-ltirr 7865  ax-pre-ltwlin 7866  ax-pre-lttrn 7867
This theorem depends on definitions:  df-bi 116  df-3or 969  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-nel 2432  df-ral 2449  df-rex 2450  df-rab 2453  df-v 2728  df-sbc 2952  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-br 3983  df-opab 4044  df-id 4271  df-po 4274  df-iso 4275  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-iota 5153  df-fun 5190  df-fv 5196  df-ov 5845  df-oprab 5846  df-mpo 5847  df-pnf 7935  df-mnf 7936  df-xr 7937  df-ltxr 7938  df-le 7939  df-ioo 9828
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator