ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elioo4g Unicode version

Theorem elioo4g 10026
Description: Membership in an open interval of extended reals. (Contributed by NM, 8-Jun-2007.) (Revised by Mario Carneiro, 28-Apr-2015.)
Assertion
Ref Expression
elioo4g  |-  ( C  e.  ( A (,) B )  <->  ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e.  RR )  /\  ( A  <  C  /\  C  <  B ) ) )

Proof of Theorem elioo4g
StepHypRef Expression
1 eliooxr 10019 . . . . 5  |-  ( C  e.  ( A (,) B )  ->  ( A  e.  RR*  /\  B  e.  RR* ) )
2 elioore 10004 . . . . 5  |-  ( C  e.  ( A (,) B )  ->  C  e.  RR )
31, 2jca 306 . . . 4  |-  ( C  e.  ( A (,) B )  ->  (
( A  e.  RR*  /\  B  e.  RR* )  /\  C  e.  RR ) )
4 df-3an 982 . . . 4  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e.  RR )  <->  ( ( A  e.  RR*  /\  B  e.  RR* )  /\  C  e.  RR ) )
53, 4sylibr 134 . . 3  |-  ( C  e.  ( A (,) B )  ->  ( A  e.  RR*  /\  B  e.  RR*  /\  C  e.  RR ) )
6 eliooord 10020 . . 3  |-  ( C  e.  ( A (,) B )  ->  ( A  <  C  /\  C  <  B ) )
75, 6jca 306 . 2  |-  ( C  e.  ( A (,) B )  ->  (
( A  e.  RR*  /\  B  e.  RR*  /\  C  e.  RR )  /\  ( A  <  C  /\  C  <  B ) ) )
8 rexr 8089 . . . . 5  |-  ( C  e.  RR  ->  C  e.  RR* )
983anim3i 1189 . . . 4  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e.  RR )  ->  ( A  e.  RR*  /\  B  e.  RR*  /\  C  e. 
RR* ) )
109anim1i 340 . . 3  |-  ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e.  RR )  /\  ( A  <  C  /\  C  <  B ) )  -> 
( ( A  e. 
RR*  /\  B  e.  RR* 
/\  C  e.  RR* )  /\  ( A  < 
C  /\  C  <  B ) ) )
11 elioo3g 10002 . . 3  |-  ( C  e.  ( A (,) B )  <->  ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e. 
RR* )  /\  ( A  <  C  /\  C  <  B ) ) )
1210, 11sylibr 134 . 2  |-  ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e.  RR )  /\  ( A  <  C  /\  C  <  B ) )  ->  C  e.  ( A (,) B ) )
137, 12impbii 126 1  |-  ( C  e.  ( A (,) B )  <->  ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e.  RR )  /\  ( A  <  C  /\  C  <  B ) ) )
Colors of variables: wff set class
Syntax hints:    /\ wa 104    <-> wb 105    /\ w3a 980    e. wcel 2167   class class class wbr 4034  (class class class)co 5925   RRcr 7895   RR*cxr 8077    < clt 8078   (,)cioo 9980
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4152  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-cnex 7987  ax-resscn 7988  ax-pre-ltirr 8008  ax-pre-ltwlin 8009  ax-pre-lttrn 8010
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-rab 2484  df-v 2765  df-sbc 2990  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-br 4035  df-opab 4096  df-id 4329  df-po 4332  df-iso 4333  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-iota 5220  df-fun 5261  df-fv 5267  df-ov 5928  df-oprab 5929  df-mpo 5930  df-pnf 8080  df-mnf 8081  df-xr 8082  df-ltxr 8083  df-le 8084  df-ioo 9984
This theorem is referenced by:  ivthreinc  14965
  Copyright terms: Public domain W3C validator