![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > elioo4g | GIF version |
Description: Membership in an open interval of extended reals. (Contributed by NM, 8-Jun-2007.) (Revised by Mario Carneiro, 28-Apr-2015.) |
Ref | Expression |
---|---|
elioo4g | ⊢ (𝐶 ∈ (𝐴(,)𝐵) ↔ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ) ∧ (𝐴 < 𝐶 ∧ 𝐶 < 𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eliooxr 9930 | . . . . 5 ⊢ (𝐶 ∈ (𝐴(,)𝐵) → (𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*)) | |
2 | elioore 9915 | . . . . 5 ⊢ (𝐶 ∈ (𝐴(,)𝐵) → 𝐶 ∈ ℝ) | |
3 | 1, 2 | jca 306 | . . . 4 ⊢ (𝐶 ∈ (𝐴(,)𝐵) → ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) ∧ 𝐶 ∈ ℝ)) |
4 | df-3an 980 | . . . 4 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ) ↔ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) ∧ 𝐶 ∈ ℝ)) | |
5 | 3, 4 | sylibr 134 | . . 3 ⊢ (𝐶 ∈ (𝐴(,)𝐵) → (𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ)) |
6 | eliooord 9931 | . . 3 ⊢ (𝐶 ∈ (𝐴(,)𝐵) → (𝐴 < 𝐶 ∧ 𝐶 < 𝐵)) | |
7 | 5, 6 | jca 306 | . 2 ⊢ (𝐶 ∈ (𝐴(,)𝐵) → ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ) ∧ (𝐴 < 𝐶 ∧ 𝐶 < 𝐵))) |
8 | rexr 8006 | . . . . 5 ⊢ (𝐶 ∈ ℝ → 𝐶 ∈ ℝ*) | |
9 | 8 | 3anim3i 1187 | . . . 4 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ) → (𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*)) |
10 | 9 | anim1i 340 | . . 3 ⊢ (((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ) ∧ (𝐴 < 𝐶 ∧ 𝐶 < 𝐵)) → ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) ∧ (𝐴 < 𝐶 ∧ 𝐶 < 𝐵))) |
11 | elioo3g 9913 | . . 3 ⊢ (𝐶 ∈ (𝐴(,)𝐵) ↔ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) ∧ (𝐴 < 𝐶 ∧ 𝐶 < 𝐵))) | |
12 | 10, 11 | sylibr 134 | . 2 ⊢ (((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ) ∧ (𝐴 < 𝐶 ∧ 𝐶 < 𝐵)) → 𝐶 ∈ (𝐴(,)𝐵)) |
13 | 7, 12 | impbii 126 | 1 ⊢ (𝐶 ∈ (𝐴(,)𝐵) ↔ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ) ∧ (𝐴 < 𝐶 ∧ 𝐶 < 𝐵))) |
Colors of variables: wff set class |
Syntax hints: ∧ wa 104 ↔ wb 105 ∧ w3a 978 ∈ wcel 2148 class class class wbr 4005 (class class class)co 5878 ℝcr 7813 ℝ*cxr 7994 < clt 7995 (,)cioo 9891 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-13 2150 ax-14 2151 ax-ext 2159 ax-sep 4123 ax-pow 4176 ax-pr 4211 ax-un 4435 ax-setind 4538 ax-cnex 7905 ax-resscn 7906 ax-pre-ltirr 7926 ax-pre-ltwlin 7927 ax-pre-lttrn 7928 |
This theorem depends on definitions: df-bi 117 df-3or 979 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ne 2348 df-nel 2443 df-ral 2460 df-rex 2461 df-rab 2464 df-v 2741 df-sbc 2965 df-dif 3133 df-un 3135 df-in 3137 df-ss 3144 df-pw 3579 df-sn 3600 df-pr 3601 df-op 3603 df-uni 3812 df-br 4006 df-opab 4067 df-id 4295 df-po 4298 df-iso 4299 df-xp 4634 df-rel 4635 df-cnv 4636 df-co 4637 df-dm 4638 df-iota 5180 df-fun 5220 df-fv 5226 df-ov 5881 df-oprab 5882 df-mpo 5883 df-pnf 7997 df-mnf 7998 df-xr 7999 df-ltxr 8000 df-le 8001 df-ioo 9895 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |