ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elioo4g GIF version

Theorem elioo4g 9844
Description: Membership in an open interval of extended reals. (Contributed by NM, 8-Jun-2007.) (Revised by Mario Carneiro, 28-Apr-2015.)
Assertion
Ref Expression
elioo4g (𝐶 ∈ (𝐴(,)𝐵) ↔ ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ) ∧ (𝐴 < 𝐶𝐶 < 𝐵)))

Proof of Theorem elioo4g
StepHypRef Expression
1 eliooxr 9837 . . . . 5 (𝐶 ∈ (𝐴(,)𝐵) → (𝐴 ∈ ℝ*𝐵 ∈ ℝ*))
2 elioore 9822 . . . . 5 (𝐶 ∈ (𝐴(,)𝐵) → 𝐶 ∈ ℝ)
31, 2jca 304 . . . 4 (𝐶 ∈ (𝐴(,)𝐵) → ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐶 ∈ ℝ))
4 df-3an 965 . . . 4 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ) ↔ ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐶 ∈ ℝ))
53, 4sylibr 133 . . 3 (𝐶 ∈ (𝐴(,)𝐵) → (𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ))
6 eliooord 9838 . . 3 (𝐶 ∈ (𝐴(,)𝐵) → (𝐴 < 𝐶𝐶 < 𝐵))
75, 6jca 304 . 2 (𝐶 ∈ (𝐴(,)𝐵) → ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ) ∧ (𝐴 < 𝐶𝐶 < 𝐵)))
8 rexr 7925 . . . . 5 (𝐶 ∈ ℝ → 𝐶 ∈ ℝ*)
983anim3i 1170 . . . 4 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ) → (𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*))
109anim1i 338 . . 3 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ) ∧ (𝐴 < 𝐶𝐶 < 𝐵)) → ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐶 < 𝐵)))
11 elioo3g 9820 . . 3 (𝐶 ∈ (𝐴(,)𝐵) ↔ ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐶 < 𝐵)))
1210, 11sylibr 133 . 2 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ) ∧ (𝐴 < 𝐶𝐶 < 𝐵)) → 𝐶 ∈ (𝐴(,)𝐵))
137, 12impbii 125 1 (𝐶 ∈ (𝐴(,)𝐵) ↔ ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ) ∧ (𝐴 < 𝐶𝐶 < 𝐵)))
Colors of variables: wff set class
Syntax hints:  wa 103  wb 104  w3a 963  wcel 2128   class class class wbr 3967  (class class class)co 5826  cr 7733  *cxr 7913   < clt 7914  (,)cioo 9798
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-13 2130  ax-14 2131  ax-ext 2139  ax-sep 4084  ax-pow 4137  ax-pr 4171  ax-un 4395  ax-setind 4498  ax-cnex 7825  ax-resscn 7826  ax-pre-ltirr 7846  ax-pre-ltwlin 7847  ax-pre-lttrn 7848
This theorem depends on definitions:  df-bi 116  df-3or 964  df-3an 965  df-tru 1338  df-fal 1341  df-nf 1441  df-sb 1743  df-eu 2009  df-mo 2010  df-clab 2144  df-cleq 2150  df-clel 2153  df-nfc 2288  df-ne 2328  df-nel 2423  df-ral 2440  df-rex 2441  df-rab 2444  df-v 2714  df-sbc 2938  df-dif 3104  df-un 3106  df-in 3108  df-ss 3115  df-pw 3546  df-sn 3567  df-pr 3568  df-op 3570  df-uni 3775  df-br 3968  df-opab 4028  df-id 4255  df-po 4258  df-iso 4259  df-xp 4594  df-rel 4595  df-cnv 4596  df-co 4597  df-dm 4598  df-iota 5137  df-fun 5174  df-fv 5180  df-ov 5829  df-oprab 5830  df-mpo 5831  df-pnf 7916  df-mnf 7917  df-xr 7918  df-ltxr 7919  df-le 7920  df-ioo 9802
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator