ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elnn0nn Unicode version

Theorem elnn0nn 9043
Description: The nonnegative integer property expressed in terms of positive integers. (Contributed by NM, 10-May-2004.) (Proof shortened by Mario Carneiro, 16-May-2014.)
Assertion
Ref Expression
elnn0nn  |-  ( N  e.  NN0  <->  ( N  e.  CC  /\  ( N  +  1 )  e.  NN ) )

Proof of Theorem elnn0nn
StepHypRef Expression
1 nn0cn 9011 . . 3  |-  ( N  e.  NN0  ->  N  e.  CC )
2 nn0p1nn 9040 . . 3  |-  ( N  e.  NN0  ->  ( N  +  1 )  e.  NN )
31, 2jca 304 . 2  |-  ( N  e.  NN0  ->  ( N  e.  CC  /\  ( N  +  1 )  e.  NN ) )
4 simpl 108 . . . 4  |-  ( ( N  e.  CC  /\  ( N  +  1
)  e.  NN )  ->  N  e.  CC )
5 ax-1cn 7737 . . . 4  |-  1  e.  CC
6 pncan 7992 . . . 4  |-  ( ( N  e.  CC  /\  1  e.  CC )  ->  ( ( N  + 
1 )  -  1 )  =  N )
74, 5, 6sylancl 410 . . 3  |-  ( ( N  e.  CC  /\  ( N  +  1
)  e.  NN )  ->  ( ( N  +  1 )  - 
1 )  =  N )
8 nnm1nn0 9042 . . . 4  |-  ( ( N  +  1 )  e.  NN  ->  (
( N  +  1 )  -  1 )  e.  NN0 )
98adantl 275 . . 3  |-  ( ( N  e.  CC  /\  ( N  +  1
)  e.  NN )  ->  ( ( N  +  1 )  - 
1 )  e.  NN0 )
107, 9eqeltrrd 2218 . 2  |-  ( ( N  e.  CC  /\  ( N  +  1
)  e.  NN )  ->  N  e.  NN0 )
113, 10impbii 125 1  |-  ( N  e.  NN0  <->  ( N  e.  CC  /\  ( N  +  1 )  e.  NN ) )
Colors of variables: wff set class
Syntax hints:    /\ wa 103    <-> wb 104    = wceq 1332    e. wcel 1481  (class class class)co 5782   CCcc 7642   1c1 7645    + caddc 7647    - cmin 7957   NNcn 8744   NN0cn0 9001
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-sep 4054  ax-pow 4106  ax-pr 4139  ax-setind 4460  ax-cnex 7735  ax-resscn 7736  ax-1cn 7737  ax-1re 7738  ax-icn 7739  ax-addcl 7740  ax-addrcl 7741  ax-mulcl 7742  ax-addcom 7744  ax-addass 7746  ax-distr 7748  ax-i2m1 7749  ax-0id 7752  ax-rnegex 7753  ax-cnre 7755
This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ne 2310  df-ral 2422  df-rex 2423  df-reu 2424  df-rab 2426  df-v 2691  df-sbc 2914  df-dif 3078  df-un 3080  df-in 3082  df-ss 3089  df-pw 3517  df-sn 3538  df-pr 3539  df-op 3541  df-uni 3745  df-int 3780  df-br 3938  df-opab 3998  df-id 4223  df-xp 4553  df-rel 4554  df-cnv 4555  df-co 4556  df-dm 4557  df-iota 5096  df-fun 5133  df-fv 5139  df-riota 5738  df-ov 5785  df-oprab 5786  df-mpo 5787  df-sub 7959  df-inn 8745  df-n0 9002
This theorem is referenced by:  elnnnn0  9044  peano2z  9114
  Copyright terms: Public domain W3C validator