ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elnn0nn Unicode version

Theorem elnn0nn 9282
Description: The nonnegative integer property expressed in terms of positive integers. (Contributed by NM, 10-May-2004.) (Proof shortened by Mario Carneiro, 16-May-2014.)
Assertion
Ref Expression
elnn0nn  |-  ( N  e.  NN0  <->  ( N  e.  CC  /\  ( N  +  1 )  e.  NN ) )

Proof of Theorem elnn0nn
StepHypRef Expression
1 nn0cn 9250 . . 3  |-  ( N  e.  NN0  ->  N  e.  CC )
2 nn0p1nn 9279 . . 3  |-  ( N  e.  NN0  ->  ( N  +  1 )  e.  NN )
31, 2jca 306 . 2  |-  ( N  e.  NN0  ->  ( N  e.  CC  /\  ( N  +  1 )  e.  NN ) )
4 simpl 109 . . . 4  |-  ( ( N  e.  CC  /\  ( N  +  1
)  e.  NN )  ->  N  e.  CC )
5 ax-1cn 7965 . . . 4  |-  1  e.  CC
6 pncan 8225 . . . 4  |-  ( ( N  e.  CC  /\  1  e.  CC )  ->  ( ( N  + 
1 )  -  1 )  =  N )
74, 5, 6sylancl 413 . . 3  |-  ( ( N  e.  CC  /\  ( N  +  1
)  e.  NN )  ->  ( ( N  +  1 )  - 
1 )  =  N )
8 nnm1nn0 9281 . . . 4  |-  ( ( N  +  1 )  e.  NN  ->  (
( N  +  1 )  -  1 )  e.  NN0 )
98adantl 277 . . 3  |-  ( ( N  e.  CC  /\  ( N  +  1
)  e.  NN )  ->  ( ( N  +  1 )  - 
1 )  e.  NN0 )
107, 9eqeltrrd 2271 . 2  |-  ( ( N  e.  CC  /\  ( N  +  1
)  e.  NN )  ->  N  e.  NN0 )
113, 10impbii 126 1  |-  ( N  e.  NN0  <->  ( N  e.  CC  /\  ( N  +  1 )  e.  NN ) )
Colors of variables: wff set class
Syntax hints:    /\ wa 104    <-> wb 105    = wceq 1364    e. wcel 2164  (class class class)co 5918   CCcc 7870   1c1 7873    + caddc 7875    - cmin 8190   NNcn 8982   NN0cn0 9240
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238  ax-setind 4569  ax-cnex 7963  ax-resscn 7964  ax-1cn 7965  ax-1re 7966  ax-icn 7967  ax-addcl 7968  ax-addrcl 7969  ax-mulcl 7970  ax-addcom 7972  ax-addass 7974  ax-distr 7976  ax-i2m1 7977  ax-0id 7980  ax-rnegex 7981  ax-cnre 7983
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-ral 2477  df-rex 2478  df-reu 2479  df-rab 2481  df-v 2762  df-sbc 2986  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-br 4030  df-opab 4091  df-id 4324  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-iota 5215  df-fun 5256  df-fv 5262  df-riota 5873  df-ov 5921  df-oprab 5922  df-mpo 5923  df-sub 8192  df-inn 8983  df-n0 9241
This theorem is referenced by:  elnnnn0  9283  peano2z  9353
  Copyright terms: Public domain W3C validator