Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > elnn0nn | Unicode version |
Description: The nonnegative integer property expressed in terms of positive integers. (Contributed by NM, 10-May-2004.) (Proof shortened by Mario Carneiro, 16-May-2014.) |
Ref | Expression |
---|---|
elnn0nn |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nn0cn 9159 | . . 3 | |
2 | nn0p1nn 9188 | . . 3 | |
3 | 1, 2 | jca 306 | . 2 |
4 | simpl 109 | . . . 4 | |
5 | ax-1cn 7879 | . . . 4 | |
6 | pncan 8137 | . . . 4 | |
7 | 4, 5, 6 | sylancl 413 | . . 3 |
8 | nnm1nn0 9190 | . . . 4 | |
9 | 8 | adantl 277 | . . 3 |
10 | 7, 9 | eqeltrrd 2253 | . 2 |
11 | 3, 10 | impbii 126 | 1 |
Colors of variables: wff set class |
Syntax hints: wa 104 wb 105 wceq 1353 wcel 2146 (class class class)co 5865 cc 7784 c1 7787 caddc 7789 cmin 8102 cn 8892 cn0 9149 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-14 2149 ax-ext 2157 ax-sep 4116 ax-pow 4169 ax-pr 4203 ax-setind 4530 ax-cnex 7877 ax-resscn 7878 ax-1cn 7879 ax-1re 7880 ax-icn 7881 ax-addcl 7882 ax-addrcl 7883 ax-mulcl 7884 ax-addcom 7886 ax-addass 7888 ax-distr 7890 ax-i2m1 7891 ax-0id 7894 ax-rnegex 7895 ax-cnre 7897 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1459 df-sb 1761 df-eu 2027 df-mo 2028 df-clab 2162 df-cleq 2168 df-clel 2171 df-nfc 2306 df-ne 2346 df-ral 2458 df-rex 2459 df-reu 2460 df-rab 2462 df-v 2737 df-sbc 2961 df-dif 3129 df-un 3131 df-in 3133 df-ss 3140 df-pw 3574 df-sn 3595 df-pr 3596 df-op 3598 df-uni 3806 df-int 3841 df-br 3999 df-opab 4060 df-id 4287 df-xp 4626 df-rel 4627 df-cnv 4628 df-co 4629 df-dm 4630 df-iota 5170 df-fun 5210 df-fv 5216 df-riota 5821 df-ov 5868 df-oprab 5869 df-mpo 5870 df-sub 8104 df-inn 8893 df-n0 9150 |
This theorem is referenced by: elnnnn0 9192 peano2z 9262 |
Copyright terms: Public domain | W3C validator |