Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > nnm1nn0 | Unicode version |
Description: A positive integer minus 1 is a nonnegative integer. (Contributed by Jason Orendorff, 24-Jan-2007.) (Revised by Mario Carneiro, 16-May-2014.) |
Ref | Expression |
---|---|
nnm1nn0 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nn1m1nn 8871 | . . . 4 | |
2 | oveq1 5848 | . . . . . 6 | |
3 | 1m1e0 8922 | . . . . . 6 | |
4 | 2, 3 | eqtrdi 2214 | . . . . 5 |
5 | 4 | orim1i 750 | . . . 4 |
6 | 1, 5 | syl 14 | . . 3 |
7 | 6 | orcomd 719 | . 2 |
8 | elnn0 9112 | . 2 | |
9 | 7, 8 | sylibr 133 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wo 698 wceq 1343 wcel 2136 (class class class)co 5841 cc0 7749 c1 7750 cmin 8065 cn 8853 cn0 9110 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-14 2139 ax-ext 2147 ax-sep 4099 ax-pow 4152 ax-pr 4186 ax-setind 4513 ax-cnex 7840 ax-resscn 7841 ax-1cn 7842 ax-1re 7843 ax-icn 7844 ax-addcl 7845 ax-addrcl 7846 ax-mulcl 7847 ax-addcom 7849 ax-addass 7851 ax-distr 7853 ax-i2m1 7854 ax-0id 7857 ax-rnegex 7858 ax-cnre 7860 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2296 df-ne 2336 df-ral 2448 df-rex 2449 df-reu 2450 df-rab 2452 df-v 2727 df-sbc 2951 df-dif 3117 df-un 3119 df-in 3121 df-ss 3128 df-pw 3560 df-sn 3581 df-pr 3582 df-op 3584 df-uni 3789 df-int 3824 df-br 3982 df-opab 4043 df-id 4270 df-xp 4609 df-rel 4610 df-cnv 4611 df-co 4612 df-dm 4613 df-iota 5152 df-fun 5189 df-fv 5195 df-riota 5797 df-ov 5844 df-oprab 5845 df-mpo 5846 df-sub 8067 df-inn 8854 df-n0 9111 |
This theorem is referenced by: elnn0nn 9152 nnaddm1cl 9248 nn0n0n1ge2 9257 fseq1m1p1 10026 nn0ennn 10364 expm1t 10479 expgt1 10489 nn0ltexp2 10619 bcn1 10667 bcm1k 10669 bcn2m1 10678 resqrexlemnm 10956 resqrexlemcvg 10957 resqrexlemga 10961 binomlem 11420 arisum 11435 arisum2 11436 cvgratnnlemnexp 11461 cvgratnnlemfm 11466 mertenslem2 11473 iddvdsexp 11751 dvdsfac 11794 oexpneg 11810 phibnd 12145 phiprmpw 12150 prmdiv 12163 oddprm 12187 fldivp1 12274 prmpwdvds 12281 dvexp 13275 lgslem1 13501 |
Copyright terms: Public domain | W3C validator |