| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nnm1nn0 | Unicode version | ||
| Description: A positive integer minus 1 is a nonnegative integer. (Contributed by Jason Orendorff, 24-Jan-2007.) (Revised by Mario Carneiro, 16-May-2014.) |
| Ref | Expression |
|---|---|
| nnm1nn0 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nn1m1nn 9025 |
. . . 4
| |
| 2 | oveq1 5932 |
. . . . . 6
| |
| 3 | 1m1e0 9076 |
. . . . . 6
| |
| 4 | 2, 3 | eqtrdi 2245 |
. . . . 5
|
| 5 | 4 | orim1i 761 |
. . . 4
|
| 6 | 1, 5 | syl 14 |
. . 3
|
| 7 | 6 | orcomd 730 |
. 2
|
| 8 | elnn0 9268 |
. 2
| |
| 9 | 7, 8 | sylibr 134 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-pow 4208 ax-pr 4243 ax-setind 4574 ax-cnex 7987 ax-resscn 7988 ax-1cn 7989 ax-1re 7990 ax-icn 7991 ax-addcl 7992 ax-addrcl 7993 ax-mulcl 7994 ax-addcom 7996 ax-addass 7998 ax-distr 8000 ax-i2m1 8001 ax-0id 8004 ax-rnegex 8005 ax-cnre 8007 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-ral 2480 df-rex 2481 df-reu 2482 df-rab 2484 df-v 2765 df-sbc 2990 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-int 3876 df-br 4035 df-opab 4096 df-id 4329 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-iota 5220 df-fun 5261 df-fv 5267 df-riota 5880 df-ov 5928 df-oprab 5929 df-mpo 5930 df-sub 8216 df-inn 9008 df-n0 9267 |
| This theorem is referenced by: elnn0nn 9308 nnaddm1cl 9404 nn0n0n1ge2 9413 fseq1m1p1 10187 nn0ennn 10542 expm1t 10676 expgt1 10686 nn0ltexp2 10818 bcn1 10867 bcm1k 10869 bcn2m1 10878 resqrexlemnm 11200 resqrexlemcvg 11201 resqrexlemga 11205 binomlem 11665 arisum 11680 arisum2 11681 cvgratnnlemnexp 11706 cvgratnnlemfm 11711 mertenslem2 11718 iddvdsexp 11997 dvdsfac 12042 oexpneg 12059 bitsfzolem 12136 phibnd 12410 phiprmpw 12415 prmdiv 12428 oddprm 12453 fldivp1 12542 prmpwdvds 12549 4sqlem12 12596 4sqlem19 12603 gsumwsubmcl 13198 gsumwmhm 13200 dvexp 15031 dvply1 15085 wilthlem1 15300 1sgm2ppw 15315 perfect1 15318 perfect 15321 lgslem1 15325 lgsquadlem1 15402 lgsquad2lem2 15407 m1lgs 15410 |
| Copyright terms: Public domain | W3C validator |