| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nnm1nn0 | Unicode version | ||
| Description: A positive integer minus 1 is a nonnegative integer. (Contributed by Jason Orendorff, 24-Jan-2007.) (Revised by Mario Carneiro, 16-May-2014.) |
| Ref | Expression |
|---|---|
| nnm1nn0 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nn1m1nn 9089 |
. . . 4
| |
| 2 | oveq1 5974 |
. . . . . 6
| |
| 3 | 1m1e0 9140 |
. . . . . 6
| |
| 4 | 2, 3 | eqtrdi 2256 |
. . . . 5
|
| 5 | 4 | orim1i 762 |
. . . 4
|
| 6 | 1, 5 | syl 14 |
. . 3
|
| 7 | 6 | orcomd 731 |
. 2
|
| 8 | elnn0 9332 |
. 2
| |
| 9 | 7, 8 | sylibr 134 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-14 2181 ax-ext 2189 ax-sep 4178 ax-pow 4234 ax-pr 4269 ax-setind 4603 ax-cnex 8051 ax-resscn 8052 ax-1cn 8053 ax-1re 8054 ax-icn 8055 ax-addcl 8056 ax-addrcl 8057 ax-mulcl 8058 ax-addcom 8060 ax-addass 8062 ax-distr 8064 ax-i2m1 8065 ax-0id 8068 ax-rnegex 8069 ax-cnre 8071 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ne 2379 df-ral 2491 df-rex 2492 df-reu 2493 df-rab 2495 df-v 2778 df-sbc 3006 df-dif 3176 df-un 3178 df-in 3180 df-ss 3187 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-int 3900 df-br 4060 df-opab 4122 df-id 4358 df-xp 4699 df-rel 4700 df-cnv 4701 df-co 4702 df-dm 4703 df-iota 5251 df-fun 5292 df-fv 5298 df-riota 5922 df-ov 5970 df-oprab 5971 df-mpo 5972 df-sub 8280 df-inn 9072 df-n0 9331 |
| This theorem is referenced by: elnn0nn 9372 nnaddm1cl 9469 nn0n0n1ge2 9478 fseq1m1p1 10252 nn0ennn 10615 expm1t 10749 expgt1 10759 nn0ltexp2 10891 bcn1 10940 bcm1k 10942 bcn2m1 10951 resqrexlemnm 11444 resqrexlemcvg 11445 resqrexlemga 11449 binomlem 11909 arisum 11924 arisum2 11925 cvgratnnlemnexp 11950 cvgratnnlemfm 11955 mertenslem2 11962 iddvdsexp 12241 dvdsfac 12286 oexpneg 12303 bitsfzolem 12380 phibnd 12654 phiprmpw 12659 prmdiv 12672 oddprm 12697 fldivp1 12786 prmpwdvds 12793 4sqlem12 12840 4sqlem19 12847 gsumwsubmcl 13443 gsumwmhm 13445 dvexp 15298 dvply1 15352 wilthlem1 15567 1sgm2ppw 15582 perfect1 15585 perfect 15588 lgslem1 15592 lgsquadlem1 15669 lgsquad2lem2 15674 m1lgs 15677 |
| Copyright terms: Public domain | W3C validator |