| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nnm1nn0 | Unicode version | ||
| Description: A positive integer minus 1 is a nonnegative integer. (Contributed by Jason Orendorff, 24-Jan-2007.) (Revised by Mario Carneiro, 16-May-2014.) |
| Ref | Expression |
|---|---|
| nnm1nn0 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nn1m1nn 9128 |
. . . 4
| |
| 2 | oveq1 6008 |
. . . . . 6
| |
| 3 | 1m1e0 9179 |
. . . . . 6
| |
| 4 | 2, 3 | eqtrdi 2278 |
. . . . 5
|
| 5 | 4 | orim1i 765 |
. . . 4
|
| 6 | 1, 5 | syl 14 |
. . 3
|
| 7 | 6 | orcomd 734 |
. 2
|
| 8 | elnn0 9371 |
. 2
| |
| 9 | 7, 8 | sylibr 134 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-pow 4258 ax-pr 4293 ax-setind 4629 ax-cnex 8090 ax-resscn 8091 ax-1cn 8092 ax-1re 8093 ax-icn 8094 ax-addcl 8095 ax-addrcl 8096 ax-mulcl 8097 ax-addcom 8099 ax-addass 8101 ax-distr 8103 ax-i2m1 8104 ax-0id 8107 ax-rnegex 8108 ax-cnre 8110 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-ral 2513 df-rex 2514 df-reu 2515 df-rab 2517 df-v 2801 df-sbc 3029 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-int 3924 df-br 4084 df-opab 4146 df-id 4384 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-iota 5278 df-fun 5320 df-fv 5326 df-riota 5954 df-ov 6004 df-oprab 6005 df-mpo 6006 df-sub 8319 df-inn 9111 df-n0 9370 |
| This theorem is referenced by: elnn0nn 9411 nnaddm1cl 9508 nn0n0n1ge2 9517 fseq1m1p1 10291 nn0ennn 10655 expm1t 10789 expgt1 10799 nn0ltexp2 10931 bcn1 10980 bcm1k 10982 bcn2m1 10991 resqrexlemnm 11529 resqrexlemcvg 11530 resqrexlemga 11534 binomlem 11994 arisum 12009 arisum2 12010 cvgratnnlemnexp 12035 cvgratnnlemfm 12040 mertenslem2 12047 iddvdsexp 12326 dvdsfac 12371 oexpneg 12388 bitsfzolem 12465 phibnd 12739 phiprmpw 12744 prmdiv 12757 oddprm 12782 fldivp1 12871 prmpwdvds 12878 4sqlem12 12925 4sqlem19 12932 gsumwsubmcl 13529 gsumwmhm 13531 dvexp 15385 dvply1 15439 wilthlem1 15654 1sgm2ppw 15669 perfect1 15672 perfect 15675 lgslem1 15679 lgsquadlem1 15756 lgsquad2lem2 15761 m1lgs 15764 |
| Copyright terms: Public domain | W3C validator |