| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nnm1nn0 | Unicode version | ||
| Description: A positive integer minus 1 is a nonnegative integer. (Contributed by Jason Orendorff, 24-Jan-2007.) (Revised by Mario Carneiro, 16-May-2014.) |
| Ref | Expression |
|---|---|
| nnm1nn0 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nn1m1nn 9056 |
. . . 4
| |
| 2 | oveq1 5953 |
. . . . . 6
| |
| 3 | 1m1e0 9107 |
. . . . . 6
| |
| 4 | 2, 3 | eqtrdi 2254 |
. . . . 5
|
| 5 | 4 | orim1i 762 |
. . . 4
|
| 6 | 1, 5 | syl 14 |
. . 3
|
| 7 | 6 | orcomd 731 |
. 2
|
| 8 | elnn0 9299 |
. 2
| |
| 9 | 7, 8 | sylibr 134 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-14 2179 ax-ext 2187 ax-sep 4163 ax-pow 4219 ax-pr 4254 ax-setind 4586 ax-cnex 8018 ax-resscn 8019 ax-1cn 8020 ax-1re 8021 ax-icn 8022 ax-addcl 8023 ax-addrcl 8024 ax-mulcl 8025 ax-addcom 8027 ax-addass 8029 ax-distr 8031 ax-i2m1 8032 ax-0id 8035 ax-rnegex 8036 ax-cnre 8038 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ne 2377 df-ral 2489 df-rex 2490 df-reu 2491 df-rab 2493 df-v 2774 df-sbc 2999 df-dif 3168 df-un 3170 df-in 3172 df-ss 3179 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-int 3886 df-br 4046 df-opab 4107 df-id 4341 df-xp 4682 df-rel 4683 df-cnv 4684 df-co 4685 df-dm 4686 df-iota 5233 df-fun 5274 df-fv 5280 df-riota 5901 df-ov 5949 df-oprab 5950 df-mpo 5951 df-sub 8247 df-inn 9039 df-n0 9298 |
| This theorem is referenced by: elnn0nn 9339 nnaddm1cl 9436 nn0n0n1ge2 9445 fseq1m1p1 10219 nn0ennn 10580 expm1t 10714 expgt1 10724 nn0ltexp2 10856 bcn1 10905 bcm1k 10907 bcn2m1 10916 resqrexlemnm 11362 resqrexlemcvg 11363 resqrexlemga 11367 binomlem 11827 arisum 11842 arisum2 11843 cvgratnnlemnexp 11868 cvgratnnlemfm 11873 mertenslem2 11880 iddvdsexp 12159 dvdsfac 12204 oexpneg 12221 bitsfzolem 12298 phibnd 12572 phiprmpw 12577 prmdiv 12590 oddprm 12615 fldivp1 12704 prmpwdvds 12711 4sqlem12 12758 4sqlem19 12765 gsumwsubmcl 13361 gsumwmhm 13363 dvexp 15216 dvply1 15270 wilthlem1 15485 1sgm2ppw 15500 perfect1 15503 perfect 15506 lgslem1 15510 lgsquadlem1 15587 lgsquad2lem2 15592 m1lgs 15595 |
| Copyright terms: Public domain | W3C validator |