Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > elnn0nn | GIF version |
Description: The nonnegative integer property expressed in terms of positive integers. (Contributed by NM, 10-May-2004.) (Proof shortened by Mario Carneiro, 16-May-2014.) |
Ref | Expression |
---|---|
elnn0nn | ⊢ (𝑁 ∈ ℕ0 ↔ (𝑁 ∈ ℂ ∧ (𝑁 + 1) ∈ ℕ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nn0cn 9124 | . . 3 ⊢ (𝑁 ∈ ℕ0 → 𝑁 ∈ ℂ) | |
2 | nn0p1nn 9153 | . . 3 ⊢ (𝑁 ∈ ℕ0 → (𝑁 + 1) ∈ ℕ) | |
3 | 1, 2 | jca 304 | . 2 ⊢ (𝑁 ∈ ℕ0 → (𝑁 ∈ ℂ ∧ (𝑁 + 1) ∈ ℕ)) |
4 | simpl 108 | . . . 4 ⊢ ((𝑁 ∈ ℂ ∧ (𝑁 + 1) ∈ ℕ) → 𝑁 ∈ ℂ) | |
5 | ax-1cn 7846 | . . . 4 ⊢ 1 ∈ ℂ | |
6 | pncan 8104 | . . . 4 ⊢ ((𝑁 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝑁 + 1) − 1) = 𝑁) | |
7 | 4, 5, 6 | sylancl 410 | . . 3 ⊢ ((𝑁 ∈ ℂ ∧ (𝑁 + 1) ∈ ℕ) → ((𝑁 + 1) − 1) = 𝑁) |
8 | nnm1nn0 9155 | . . . 4 ⊢ ((𝑁 + 1) ∈ ℕ → ((𝑁 + 1) − 1) ∈ ℕ0) | |
9 | 8 | adantl 275 | . . 3 ⊢ ((𝑁 ∈ ℂ ∧ (𝑁 + 1) ∈ ℕ) → ((𝑁 + 1) − 1) ∈ ℕ0) |
10 | 7, 9 | eqeltrrd 2244 | . 2 ⊢ ((𝑁 ∈ ℂ ∧ (𝑁 + 1) ∈ ℕ) → 𝑁 ∈ ℕ0) |
11 | 3, 10 | impbii 125 | 1 ⊢ (𝑁 ∈ ℕ0 ↔ (𝑁 ∈ ℂ ∧ (𝑁 + 1) ∈ ℕ)) |
Colors of variables: wff set class |
Syntax hints: ∧ wa 103 ↔ wb 104 = wceq 1343 ∈ wcel 2136 (class class class)co 5842 ℂcc 7751 1c1 7754 + caddc 7756 − cmin 8069 ℕcn 8857 ℕ0cn0 9114 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 ax-setind 4514 ax-cnex 7844 ax-resscn 7845 ax-1cn 7846 ax-1re 7847 ax-icn 7848 ax-addcl 7849 ax-addrcl 7850 ax-mulcl 7851 ax-addcom 7853 ax-addass 7855 ax-distr 7857 ax-i2m1 7858 ax-0id 7861 ax-rnegex 7862 ax-cnre 7864 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-ral 2449 df-rex 2450 df-reu 2451 df-rab 2453 df-v 2728 df-sbc 2952 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-int 3825 df-br 3983 df-opab 4044 df-id 4271 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-iota 5153 df-fun 5190 df-fv 5196 df-riota 5798 df-ov 5845 df-oprab 5846 df-mpo 5847 df-sub 8071 df-inn 8858 df-n0 9115 |
This theorem is referenced by: elnnnn0 9157 peano2z 9227 |
Copyright terms: Public domain | W3C validator |