ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elnnnn0 Unicode version

Theorem elnnnn0 8872
Description: The positive integer property expressed in terms of nonnegative integers. (Contributed by NM, 10-May-2004.)
Assertion
Ref Expression
elnnnn0  |-  ( N  e.  NN  <->  ( N  e.  CC  /\  ( N  -  1 )  e. 
NN0 ) )

Proof of Theorem elnnnn0
StepHypRef Expression
1 nncn 8586 . 2  |-  ( N  e.  NN  ->  N  e.  CC )
2 npcan1 8007 . . . . 5  |-  ( N  e.  CC  ->  (
( N  -  1 )  +  1 )  =  N )
32eleq1d 2168 . . . 4  |-  ( N  e.  CC  ->  (
( ( N  - 
1 )  +  1 )  e.  NN  <->  N  e.  NN ) )
4 peano2cnm 7899 . . . . 5  |-  ( N  e.  CC  ->  ( N  -  1 )  e.  CC )
54biantrurd 301 . . . 4  |-  ( N  e.  CC  ->  (
( ( N  - 
1 )  +  1 )  e.  NN  <->  ( ( N  -  1 )  e.  CC  /\  (
( N  -  1 )  +  1 )  e.  NN ) ) )
63, 5bitr3d 189 . . 3  |-  ( N  e.  CC  ->  ( N  e.  NN  <->  ( ( N  -  1 )  e.  CC  /\  (
( N  -  1 )  +  1 )  e.  NN ) ) )
7 elnn0nn 8871 . . 3  |-  ( ( N  -  1 )  e.  NN0  <->  ( ( N  -  1 )  e.  CC  /\  ( ( N  -  1 )  +  1 )  e.  NN ) )
86, 7syl6bbr 197 . 2  |-  ( N  e.  CC  ->  ( N  e.  NN  <->  ( N  -  1 )  e. 
NN0 ) )
91, 8biadan2 447 1  |-  ( N  e.  NN  <->  ( N  e.  CC  /\  ( N  -  1 )  e. 
NN0 ) )
Colors of variables: wff set class
Syntax hints:    /\ wa 103    <-> wb 104    e. wcel 1448  (class class class)co 5706   CCcc 7498   1c1 7501    + caddc 7503    - cmin 7804   NNcn 8578   NN0cn0 8829
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 584  ax-in2 585  ax-io 671  ax-5 1391  ax-7 1392  ax-gen 1393  ax-ie1 1437  ax-ie2 1438  ax-8 1450  ax-10 1451  ax-11 1452  ax-i12 1453  ax-bndl 1454  ax-4 1455  ax-14 1460  ax-17 1474  ax-i9 1478  ax-ial 1482  ax-i5r 1483  ax-ext 2082  ax-sep 3986  ax-pow 4038  ax-pr 4069  ax-setind 4390  ax-cnex 7586  ax-resscn 7587  ax-1cn 7588  ax-1re 7589  ax-icn 7590  ax-addcl 7591  ax-addrcl 7592  ax-mulcl 7593  ax-addcom 7595  ax-addass 7597  ax-distr 7599  ax-i2m1 7600  ax-0id 7603  ax-rnegex 7604  ax-cnre 7606
This theorem depends on definitions:  df-bi 116  df-3an 932  df-tru 1302  df-fal 1305  df-nf 1405  df-sb 1704  df-eu 1963  df-mo 1964  df-clab 2087  df-cleq 2093  df-clel 2096  df-nfc 2229  df-ne 2268  df-ral 2380  df-rex 2381  df-reu 2382  df-rab 2384  df-v 2643  df-sbc 2863  df-dif 3023  df-un 3025  df-in 3027  df-ss 3034  df-pw 3459  df-sn 3480  df-pr 3481  df-op 3483  df-uni 3684  df-int 3719  df-br 3876  df-opab 3930  df-id 4153  df-xp 4483  df-rel 4484  df-cnv 4485  df-co 4486  df-dm 4487  df-iota 5024  df-fun 5061  df-fv 5067  df-riota 5662  df-ov 5709  df-oprab 5710  df-mpo 5711  df-sub 7806  df-inn 8579  df-n0 8830
This theorem is referenced by:  elfzom1elp1fzo  9820  facnn2  10321
  Copyright terms: Public domain W3C validator