ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  en1eqsn Unicode version

Theorem en1eqsn 7076
Description: A set with one element is a singleton. (Contributed by FL, 18-Aug-2008.)
Assertion
Ref Expression
en1eqsn  |-  ( ( A  e.  B  /\  B  ~~  1o )  ->  B  =  { A } )

Proof of Theorem en1eqsn
StepHypRef Expression
1 1onn 6629 . . . . . 6  |-  1o  e.  om
2 nnfi 6995 . . . . . 6  |-  ( 1o  e.  om  ->  1o  e.  Fin )
31, 2ax-mp 5 . . . . 5  |-  1o  e.  Fin
4 enfii 6997 . . . . 5  |-  ( ( 1o  e.  Fin  /\  B  ~~  1o )  ->  B  e.  Fin )
53, 4mpan 424 . . . 4  |-  ( B 
~~  1o  ->  B  e. 
Fin )
65adantl 277 . . 3  |-  ( ( A  e.  B  /\  B  ~~  1o )  ->  B  e.  Fin )
7 snssi 3788 . . . 4  |-  ( A  e.  B  ->  { A }  C_  B )
87adantr 276 . . 3  |-  ( ( A  e.  B  /\  B  ~~  1o )  ->  { A }  C_  B
)
9 ensn1g 6912 . . . 4  |-  ( A  e.  B  ->  { A }  ~~  1o )
10 ensym 6896 . . . 4  |-  ( B 
~~  1o  ->  1o  ~~  B )
11 entr 6899 . . . 4  |-  ( ( { A }  ~~  1o  /\  1o  ~~  B
)  ->  { A }  ~~  B )
129, 10, 11syl2an 289 . . 3  |-  ( ( A  e.  B  /\  B  ~~  1o )  ->  { A }  ~~  B
)
13 fisseneq 7057 . . 3  |-  ( ( B  e.  Fin  /\  { A }  C_  B  /\  { A }  ~~  B )  ->  { A }  =  B )
146, 8, 12, 13syl3anc 1250 . 2  |-  ( ( A  e.  B  /\  B  ~~  1o )  ->  { A }  =  B )
1514eqcomd 2213 1  |-  ( ( A  e.  B  /\  B  ~~  1o )  ->  B  =  { A } )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1373    e. wcel 2178    C_ wss 3174   {csn 3643   class class class wbr 4059   omcom 4656   1oc1o 6518    ~~ cen 6848   Fincfn 6850
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-coll 4175  ax-sep 4178  ax-nul 4186  ax-pow 4234  ax-pr 4269  ax-un 4498  ax-setind 4603  ax-iinf 4654
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-ral 2491  df-rex 2492  df-reu 2493  df-rab 2495  df-v 2778  df-sbc 3006  df-csb 3102  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-nul 3469  df-if 3580  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-int 3900  df-iun 3943  df-br 4060  df-opab 4122  df-mpt 4123  df-tr 4159  df-id 4358  df-iord 4431  df-on 4433  df-suc 4436  df-iom 4657  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-res 4705  df-ima 4706  df-iota 5251  df-fun 5292  df-fn 5293  df-f 5294  df-f1 5295  df-fo 5296  df-f1o 5297  df-fv 5298  df-1o 6525  df-er 6643  df-en 6851  df-fin 6853
This theorem is referenced by:  en1eqsnbi  7077  1nsgtrivd  13670  en1top  14664
  Copyright terms: Public domain W3C validator