Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > en1eqsn | Unicode version |
Description: A set with one element is a singleton. (Contributed by FL, 18-Aug-2008.) |
Ref | Expression |
---|---|
en1eqsn |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1onn 6499 | . . . . . 6 | |
2 | nnfi 6850 | . . . . . 6 | |
3 | 1, 2 | ax-mp 5 | . . . . 5 |
4 | enfii 6852 | . . . . 5 | |
5 | 3, 4 | mpan 422 | . . . 4 |
6 | 5 | adantl 275 | . . 3 |
7 | snssi 3724 | . . . 4 | |
8 | 7 | adantr 274 | . . 3 |
9 | ensn1g 6775 | . . . 4 | |
10 | ensym 6759 | . . . 4 | |
11 | entr 6762 | . . . 4 | |
12 | 9, 10, 11 | syl2an 287 | . . 3 |
13 | fisseneq 6909 | . . 3 | |
14 | 6, 8, 12, 13 | syl3anc 1233 | . 2 |
15 | 14 | eqcomd 2176 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wceq 1348 wcel 2141 wss 3121 csn 3583 class class class wbr 3989 com 4574 c1o 6388 cen 6716 cfn 6718 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-coll 4104 ax-sep 4107 ax-nul 4115 ax-pow 4160 ax-pr 4194 ax-un 4418 ax-setind 4521 ax-iinf 4572 |
This theorem depends on definitions: df-bi 116 df-dc 830 df-3or 974 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-ral 2453 df-rex 2454 df-reu 2455 df-rab 2457 df-v 2732 df-sbc 2956 df-csb 3050 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-nul 3415 df-if 3527 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-int 3832 df-iun 3875 df-br 3990 df-opab 4051 df-mpt 4052 df-tr 4088 df-id 4278 df-iord 4351 df-on 4353 df-suc 4356 df-iom 4575 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-rn 4622 df-res 4623 df-ima 4624 df-iota 5160 df-fun 5200 df-fn 5201 df-f 5202 df-f1 5203 df-fo 5204 df-f1o 5205 df-fv 5206 df-1o 6395 df-er 6513 df-en 6719 df-fin 6721 |
This theorem is referenced by: en1eqsnbi 6926 en1top 12871 |
Copyright terms: Public domain | W3C validator |