ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ennnfone Unicode version

Theorem ennnfone 12996
Description: A condition for a set being countably infinite. Corollary 8.1.13 of [AczelRathjen], p. 73. Roughly speaking, the condition says that 
A is countable (that's the  f : NN0 -onto-> A part, as seen in theorems like ctm 7276), infinite (that's the part about being able to find an element of  A distinct from any mapping of a natural number via  f), and has decidable equality. (Contributed by Jim Kingdon, 27-Oct-2022.)
Assertion
Ref Expression
ennnfone  |-  ( A 
~~  NN  <->  ( A. x  e.  A  A. y  e.  A DECID  x  =  y  /\  E. f ( f : NN0 -onto-> A  /\  A. n  e.  NN0  E. k  e.  NN0  A. j  e.  ( 0 ... n
) ( f `  k )  =/=  (
f `  j )
) ) )
Distinct variable groups:    A, f, j, n, x, y    f,
k, j, n
Allowed substitution hint:    A( k)

Proof of Theorem ennnfone
StepHypRef Expression
1 ennnfonelemim 12995 . 2  |-  ( A 
~~  NN  ->  ( A. x  e.  A  A. y  e.  A DECID  x  =  y  /\  E. f ( f : NN0 -onto-> A  /\  A. n  e.  NN0  E. k  e.  NN0  A. j  e.  ( 0 ... n
) ( f `  k )  =/=  (
f `  j )
) ) )
2 simpl 109 . . . . . 6  |-  ( ( A. x  e.  A  A. y  e.  A DECID  x  =  y  /\  (
f : NN0 -onto-> A  /\  A. n  e.  NN0  E. k  e.  NN0  A. j  e.  ( 0 ... n
) ( f `  k )  =/=  (
f `  j )
) )  ->  A. x  e.  A  A. y  e.  A DECID  x  =  y
)
3 simprl 529 . . . . . 6  |-  ( ( A. x  e.  A  A. y  e.  A DECID  x  =  y  /\  (
f : NN0 -onto-> A  /\  A. n  e.  NN0  E. k  e.  NN0  A. j  e.  ( 0 ... n
) ( f `  k )  =/=  (
f `  j )
) )  ->  f : NN0 -onto-> A )
4 simprr 531 . . . . . 6  |-  ( ( A. x  e.  A  A. y  e.  A DECID  x  =  y  /\  (
f : NN0 -onto-> A  /\  A. n  e.  NN0  E. k  e.  NN0  A. j  e.  ( 0 ... n
) ( f `  k )  =/=  (
f `  j )
) )  ->  A. n  e.  NN0  E. k  e. 
NN0  A. j  e.  ( 0 ... n ) ( f `  k
)  =/=  ( f `
 j ) )
52, 3, 4ennnfonelemr 12994 . . . . 5  |-  ( ( A. x  e.  A  A. y  e.  A DECID  x  =  y  /\  (
f : NN0 -onto-> A  /\  A. n  e.  NN0  E. k  e.  NN0  A. j  e.  ( 0 ... n
) ( f `  k )  =/=  (
f `  j )
) )  ->  A  ~~  NN )
65ex 115 . . . 4  |-  ( A. x  e.  A  A. y  e.  A DECID  x  =  y  ->  ( ( f : NN0 -onto-> A  /\  A. n  e.  NN0  E. k  e.  NN0  A. j  e.  ( 0 ... n
) ( f `  k )  =/=  (
f `  j )
)  ->  A  ~~  NN ) )
76exlimdv 1865 . . 3  |-  ( A. x  e.  A  A. y  e.  A DECID  x  =  y  ->  ( E. f
( f : NN0 -onto-> A  /\  A. n  e. 
NN0  E. k  e.  NN0  A. j  e.  ( 0 ... n ) ( f `  k )  =/=  ( f `  j ) )  ->  A  ~~  NN ) )
87imp 124 . 2  |-  ( ( A. x  e.  A  A. y  e.  A DECID  x  =  y  /\  E. f
( f : NN0 -onto-> A  /\  A. n  e. 
NN0  E. k  e.  NN0  A. j  e.  ( 0 ... n ) ( f `  k )  =/=  ( f `  j ) ) )  ->  A  ~~  NN )
91, 8impbii 126 1  |-  ( A 
~~  NN  <->  ( A. x  e.  A  A. y  e.  A DECID  x  =  y  /\  E. f ( f : NN0 -onto-> A  /\  A. n  e.  NN0  E. k  e.  NN0  A. j  e.  ( 0 ... n
) ( f `  k )  =/=  (
f `  j )
) ) )
Colors of variables: wff set class
Syntax hints:    /\ wa 104    <-> wb 105  DECID wdc 839   E.wex 1538    =/= wne 2400   A.wral 2508   E.wrex 2509   class class class wbr 4083   -onto->wfo 5316   ` cfv 5318  (class class class)co 6001    ~~ cen 6885   0cc0 7999   NNcn 9110   NN0cn0 9369   ...cfz 10204
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4199  ax-sep 4202  ax-nul 4210  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-iinf 4680  ax-cnex 8090  ax-resscn 8091  ax-1cn 8092  ax-1re 8093  ax-icn 8094  ax-addcl 8095  ax-addrcl 8096  ax-mulcl 8097  ax-addcom 8099  ax-addass 8101  ax-distr 8103  ax-i2m1 8104  ax-0lt1 8105  ax-0id 8107  ax-rnegex 8108  ax-cnre 8110  ax-pre-ltirr 8111  ax-pre-ltwlin 8112  ax-pre-lttrn 8113  ax-pre-ltadd 8115
This theorem depends on definitions:  df-bi 117  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-if 3603  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-iun 3967  df-br 4084  df-opab 4146  df-mpt 4147  df-tr 4183  df-id 4384  df-iord 4457  df-on 4459  df-ilim 4460  df-suc 4462  df-iom 4683  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-fo 5324  df-f1o 5325  df-fv 5326  df-riota 5954  df-ov 6004  df-oprab 6005  df-mpo 6006  df-1st 6286  df-2nd 6287  df-recs 6451  df-frec 6537  df-er 6680  df-pm 6798  df-en 6888  df-pnf 8183  df-mnf 8184  df-xr 8185  df-ltxr 8186  df-le 8187  df-sub 8319  df-neg 8320  df-inn 9111  df-n0 9370  df-z 9447  df-uz 9723  df-fz 10205  df-seqfrec 10670
This theorem is referenced by:  ctinfom  12999
  Copyright terms: Public domain W3C validator