Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  enomni Unicode version

Theorem enomni 7015
 Description: Omniscience is invariant with respect to equinumerosity. For example, this means that we can express the Limited Principle of Omniscience as either Omni or Omni. The former is a better match to conventional notation in the sense that df2o3 6331 says that whereas the corresponding relationship does not exist between and . (Contributed by Jim Kingdon, 13-Jul-2022.)
Assertion
Ref Expression
enomni Omni Omni

Proof of Theorem enomni
StepHypRef Expression
1 enomnilem 7014 . 2 Omni Omni
2 ensym 6679 . . 3
3 enomnilem 7014 . . 3 Omni Omni
42, 3syl 14 . 2 Omni Omni
51, 4impbid 128 1 Omni Omni
 Colors of variables: wff set class Syntax hints:   wi 4   wb 104   wcel 1481   class class class wbr 3933   cen 6636  Omnicomni 7008 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-sep 4050  ax-nul 4058  ax-pow 4102  ax-pr 4135  ax-un 4359  ax-setind 4456 This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ne 2310  df-ral 2422  df-rex 2423  df-v 2689  df-sbc 2911  df-dif 3074  df-un 3076  df-in 3078  df-ss 3085  df-nul 3365  df-pw 3513  df-sn 3534  df-pr 3535  df-op 3537  df-uni 3741  df-int 3776  df-br 3934  df-opab 3994  df-id 4219  df-suc 4297  df-iom 4509  df-xp 4549  df-rel 4550  df-cnv 4551  df-co 4552  df-dm 4553  df-rn 4554  df-res 4555  df-ima 4556  df-iota 5092  df-fun 5129  df-fn 5130  df-f 5131  df-f1 5132  df-fo 5133  df-f1o 5134  df-fv 5135  df-ov 5781  df-oprab 5782  df-mpo 5783  df-1o 6317  df-2o 6318  df-er 6433  df-map 6548  df-en 6639  df-omni 7010 This theorem is referenced by:  exmidunben  11966  trilpo  13394
 Copyright terms: Public domain W3C validator