![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > enomni | GIF version |
Description: Omniscience is invariant with respect to equinumerosity. For example, this means that we can express the Limited Principle of Omniscience as either ω ∈ Omni or ℕ0 ∈ Omni. The former is a better match to conventional notation in the sense that df2o3 6433 says that 2o = {∅, 1o} whereas the corresponding relationship does not exist between 2 and {0, 1}. (Contributed by Jim Kingdon, 13-Jul-2022.) |
Ref | Expression |
---|---|
enomni | ⊢ (𝐴 ≈ 𝐵 → (𝐴 ∈ Omni ↔ 𝐵 ∈ Omni)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | enomnilem 7138 | . 2 ⊢ (𝐴 ≈ 𝐵 → (𝐴 ∈ Omni → 𝐵 ∈ Omni)) | |
2 | ensym 6783 | . . 3 ⊢ (𝐴 ≈ 𝐵 → 𝐵 ≈ 𝐴) | |
3 | enomnilem 7138 | . . 3 ⊢ (𝐵 ≈ 𝐴 → (𝐵 ∈ Omni → 𝐴 ∈ Omni)) | |
4 | 2, 3 | syl 14 | . 2 ⊢ (𝐴 ≈ 𝐵 → (𝐵 ∈ Omni → 𝐴 ∈ Omni)) |
5 | 1, 4 | impbid 129 | 1 ⊢ (𝐴 ≈ 𝐵 → (𝐴 ∈ Omni ↔ 𝐵 ∈ Omni)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 105 ∈ wcel 2148 class class class wbr 4005 ≈ cen 6740 Omnicomni 7134 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-13 2150 ax-14 2151 ax-ext 2159 ax-sep 4123 ax-nul 4131 ax-pow 4176 ax-pr 4211 ax-un 4435 ax-setind 4538 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ne 2348 df-ral 2460 df-rex 2461 df-v 2741 df-sbc 2965 df-dif 3133 df-un 3135 df-in 3137 df-ss 3144 df-nul 3425 df-pw 3579 df-sn 3600 df-pr 3601 df-op 3603 df-uni 3812 df-int 3847 df-br 4006 df-opab 4067 df-id 4295 df-suc 4373 df-iom 4592 df-xp 4634 df-rel 4635 df-cnv 4636 df-co 4637 df-dm 4638 df-rn 4639 df-res 4640 df-ima 4641 df-iota 5180 df-fun 5220 df-fn 5221 df-f 5222 df-f1 5223 df-fo 5224 df-f1o 5225 df-fv 5226 df-ov 5880 df-oprab 5881 df-mpo 5882 df-1o 6419 df-2o 6420 df-er 6537 df-map 6652 df-en 6743 df-omni 7135 |
This theorem is referenced by: exmidunben 12429 trilpo 14830 |
Copyright terms: Public domain | W3C validator |