ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  enomni GIF version

Theorem enomni 7139
Description: Omniscience is invariant with respect to equinumerosity. For example, this means that we can express the Limited Principle of Omniscience as either ω ∈ Omni or 0 ∈ Omni. The former is a better match to conventional notation in the sense that df2o3 6433 says that 2o = {∅, 1o} whereas the corresponding relationship does not exist between 2 and {0, 1}. (Contributed by Jim Kingdon, 13-Jul-2022.)
Assertion
Ref Expression
enomni (𝐴𝐵 → (𝐴 ∈ Omni ↔ 𝐵 ∈ Omni))

Proof of Theorem enomni
StepHypRef Expression
1 enomnilem 7138 . 2 (𝐴𝐵 → (𝐴 ∈ Omni → 𝐵 ∈ Omni))
2 ensym 6783 . . 3 (𝐴𝐵𝐵𝐴)
3 enomnilem 7138 . . 3 (𝐵𝐴 → (𝐵 ∈ Omni → 𝐴 ∈ Omni))
42, 3syl 14 . 2 (𝐴𝐵 → (𝐵 ∈ Omni → 𝐴 ∈ Omni))
51, 4impbid 129 1 (𝐴𝐵 → (𝐴 ∈ Omni ↔ 𝐵 ∈ Omni))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105  wcel 2148   class class class wbr 4005  cen 6740  Omnicomni 7134
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-nul 4131  ax-pow 4176  ax-pr 4211  ax-un 4435  ax-setind 4538
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-ral 2460  df-rex 2461  df-v 2741  df-sbc 2965  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-nul 3425  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-int 3847  df-br 4006  df-opab 4067  df-id 4295  df-suc 4373  df-iom 4592  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-rn 4639  df-res 4640  df-ima 4641  df-iota 5180  df-fun 5220  df-fn 5221  df-f 5222  df-f1 5223  df-fo 5224  df-f1o 5225  df-fv 5226  df-ov 5880  df-oprab 5881  df-mpo 5882  df-1o 6419  df-2o 6420  df-er 6537  df-map 6652  df-en 6743  df-omni 7135
This theorem is referenced by:  exmidunben  12429  trilpo  14830
  Copyright terms: Public domain W3C validator