ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  enomni GIF version

Theorem enomni 7314
Description: Omniscience is invariant with respect to equinumerosity. For example, this means that we can express the Limited Principle of Omniscience as either ω ∈ Omni or 0 ∈ Omni. The former is a better match to conventional notation in the sense that df2o3 6583 says that 2o = {∅, 1o} whereas the corresponding relationship does not exist between 2 and {0, 1}. (Contributed by Jim Kingdon, 13-Jul-2022.)
Assertion
Ref Expression
enomni (𝐴𝐵 → (𝐴 ∈ Omni ↔ 𝐵 ∈ Omni))

Proof of Theorem enomni
StepHypRef Expression
1 enomnilem 7313 . 2 (𝐴𝐵 → (𝐴 ∈ Omni → 𝐵 ∈ Omni))
2 ensym 6941 . . 3 (𝐴𝐵𝐵𝐴)
3 enomnilem 7313 . . 3 (𝐵𝐴 → (𝐵 ∈ Omni → 𝐴 ∈ Omni))
42, 3syl 14 . 2 (𝐴𝐵 → (𝐵 ∈ Omni → 𝐴 ∈ Omni))
51, 4impbid 129 1 (𝐴𝐵 → (𝐴 ∈ Omni ↔ 𝐵 ∈ Omni))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105  wcel 2200   class class class wbr 4083  cen 6893  Omnicomni 7309
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-nul 4210  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-ral 2513  df-rex 2514  df-v 2801  df-sbc 3029  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-br 4084  df-opab 4146  df-id 4384  df-suc 4462  df-iom 4683  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-fo 5324  df-f1o 5325  df-fv 5326  df-ov 6010  df-oprab 6011  df-mpo 6012  df-1o 6568  df-2o 6569  df-er 6688  df-map 6805  df-en 6896  df-omni 7310
This theorem is referenced by:  exmidunben  13005  nnnninfen  16417  trilpo  16441
  Copyright terms: Public domain W3C validator