ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  enomni GIF version

Theorem enomni 7274
Description: Omniscience is invariant with respect to equinumerosity. For example, this means that we can express the Limited Principle of Omniscience as either ω ∈ Omni or 0 ∈ Omni. The former is a better match to conventional notation in the sense that df2o3 6546 says that 2o = {∅, 1o} whereas the corresponding relationship does not exist between 2 and {0, 1}. (Contributed by Jim Kingdon, 13-Jul-2022.)
Assertion
Ref Expression
enomni (𝐴𝐵 → (𝐴 ∈ Omni ↔ 𝐵 ∈ Omni))

Proof of Theorem enomni
StepHypRef Expression
1 enomnilem 7273 . 2 (𝐴𝐵 → (𝐴 ∈ Omni → 𝐵 ∈ Omni))
2 ensym 6903 . . 3 (𝐴𝐵𝐵𝐴)
3 enomnilem 7273 . . 3 (𝐵𝐴 → (𝐵 ∈ Omni → 𝐴 ∈ Omni))
42, 3syl 14 . 2 (𝐴𝐵 → (𝐵 ∈ Omni → 𝐴 ∈ Omni))
51, 4impbid 129 1 (𝐴𝐵 → (𝐴 ∈ Omni ↔ 𝐵 ∈ Omni))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105  wcel 2180   class class class wbr 4062  cen 6855  Omnicomni 7269
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 713  ax-5 1473  ax-7 1474  ax-gen 1475  ax-ie1 1519  ax-ie2 1520  ax-8 1530  ax-10 1531  ax-11 1532  ax-i12 1533  ax-bndl 1535  ax-4 1536  ax-17 1552  ax-i9 1556  ax-ial 1560  ax-i5r 1561  ax-13 2182  ax-14 2183  ax-ext 2191  ax-sep 4181  ax-nul 4189  ax-pow 4237  ax-pr 4272  ax-un 4501  ax-setind 4606
This theorem depends on definitions:  df-bi 117  df-3an 985  df-tru 1378  df-fal 1381  df-nf 1487  df-sb 1789  df-eu 2060  df-mo 2061  df-clab 2196  df-cleq 2202  df-clel 2205  df-nfc 2341  df-ne 2381  df-ral 2493  df-rex 2494  df-v 2781  df-sbc 3009  df-dif 3179  df-un 3181  df-in 3183  df-ss 3190  df-nul 3472  df-pw 3631  df-sn 3652  df-pr 3653  df-op 3655  df-uni 3868  df-int 3903  df-br 4063  df-opab 4125  df-id 4361  df-suc 4439  df-iom 4660  df-xp 4702  df-rel 4703  df-cnv 4704  df-co 4705  df-dm 4706  df-rn 4707  df-res 4708  df-ima 4709  df-iota 5254  df-fun 5296  df-fn 5297  df-f 5298  df-f1 5299  df-fo 5300  df-f1o 5301  df-fv 5302  df-ov 5977  df-oprab 5978  df-mpo 5979  df-1o 6532  df-2o 6533  df-er 6650  df-map 6767  df-en 6858  df-omni 7270
This theorem is referenced by:  exmidunben  12963  nnnninfen  16298  trilpo  16322
  Copyright terms: Public domain W3C validator