| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mulcmpblnq0 | Unicode version | ||
| Description: Lemma showing compatibility of multiplication on nonnegative fractions. (Contributed by Jim Kingdon, 20-Nov-2019.) |
| Ref | Expression |
|---|---|
| mulcmpblnq0 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveq12 6016 |
. 2
| |
| 2 | nnmcl 6635 |
. . . . . . . 8
| |
| 3 | mulpiord 7512 |
. . . . . . . . 9
| |
| 4 | mulclpi 7523 |
. . . . . . . . 9
| |
| 5 | 3, 4 | eqeltrrd 2307 |
. . . . . . . 8
|
| 6 | 2, 5 | anim12i 338 |
. . . . . . 7
|
| 7 | 6 | an4s 590 |
. . . . . 6
|
| 8 | nnmcl 6635 |
. . . . . . . 8
| |
| 9 | mulpiord 7512 |
. . . . . . . . 9
| |
| 10 | mulclpi 7523 |
. . . . . . . . 9
| |
| 11 | 9, 10 | eqeltrrd 2307 |
. . . . . . . 8
|
| 12 | 8, 11 | anim12i 338 |
. . . . . . 7
|
| 13 | 12 | an4s 590 |
. . . . . 6
|
| 14 | 7, 13 | anim12i 338 |
. . . . 5
|
| 15 | 14 | an4s 590 |
. . . 4
|
| 16 | enq0breq 7631 |
. . . 4
| |
| 17 | 15, 16 | syl 14 |
. . 3
|
| 18 | simplll 533 |
. . . . 5
| |
| 19 | simprll 537 |
. . . . 5
| |
| 20 | simplrr 536 |
. . . . . 6
| |
| 21 | pinn 7504 |
. . . . . 6
| |
| 22 | 20, 21 | syl 14 |
. . . . 5
|
| 23 | nnmcom 6643 |
. . . . . 6
| |
| 24 | 23 | adantl 277 |
. . . . 5
|
| 25 | nnmass 6641 |
. . . . . 6
| |
| 26 | 25 | adantl 277 |
. . . . 5
|
| 27 | simprrr 540 |
. . . . . 6
| |
| 28 | pinn 7504 |
. . . . . 6
| |
| 29 | 27, 28 | syl 14 |
. . . . 5
|
| 30 | nnmcl 6635 |
. . . . . 6
| |
| 31 | 30 | adantl 277 |
. . . . 5
|
| 32 | 18, 19, 22, 24, 26, 29, 31 | caov4d 6196 |
. . . 4
|
| 33 | simpllr 534 |
. . . . . 6
| |
| 34 | pinn 7504 |
. . . . . 6
| |
| 35 | 33, 34 | syl 14 |
. . . . 5
|
| 36 | simprlr 538 |
. . . . . 6
| |
| 37 | pinn 7504 |
. . . . . 6
| |
| 38 | 36, 37 | syl 14 |
. . . . 5
|
| 39 | simplrl 535 |
. . . . 5
| |
| 40 | simprrl 539 |
. . . . 5
| |
| 41 | 35, 38, 39, 24, 26, 40, 31 | caov4d 6196 |
. . . 4
|
| 42 | 32, 41 | eqeq12d 2244 |
. . 3
|
| 43 | 17, 42 | bitrd 188 |
. 2
|
| 44 | 1, 43 | imbitrrid 156 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-coll 4199 ax-sep 4202 ax-nul 4210 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-setind 4629 ax-iinf 4680 |
| This theorem depends on definitions: df-bi 117 df-dc 840 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-ral 2513 df-rex 2514 df-reu 2515 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-int 3924 df-iun 3967 df-br 4084 df-opab 4146 df-mpt 4147 df-tr 4183 df-id 4384 df-iord 4457 df-on 4459 df-suc 4462 df-iom 4683 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-res 4731 df-ima 4732 df-iota 5278 df-fun 5320 df-fn 5321 df-f 5322 df-f1 5323 df-fo 5324 df-f1o 5325 df-fv 5326 df-ov 6010 df-oprab 6011 df-mpo 6012 df-1st 6292 df-2nd 6293 df-recs 6457 df-irdg 6522 df-oadd 6572 df-omul 6573 df-ni 7499 df-mi 7501 df-enq0 7619 |
| This theorem is referenced by: mulnq0mo 7643 |
| Copyright terms: Public domain | W3C validator |