ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mulcmpblnq0 Unicode version

Theorem mulcmpblnq0 7418
Description: Lemma showing compatibility of multiplication on nonnegative fractions. (Contributed by Jim Kingdon, 20-Nov-2019.)
Assertion
Ref Expression
mulcmpblnq0  |-  ( ( ( ( A  e. 
om  /\  B  e.  N. )  /\  ( C  e.  om  /\  D  e.  N. ) )  /\  ( ( F  e. 
om  /\  G  e.  N. )  /\  ( R  e.  om  /\  S  e.  N. ) ) )  ->  ( ( ( A  .o  D )  =  ( B  .o  C )  /\  ( F  .o  S )  =  ( G  .o  R
) )  ->  <. ( A  .o  F ) ,  ( B  .o  G
) >. ~Q0  <.
( C  .o  R
) ,  ( D  .o  S ) >.
) )

Proof of Theorem mulcmpblnq0
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq12 5874 . 2  |-  ( ( ( A  .o  D
)  =  ( B  .o  C )  /\  ( F  .o  S
)  =  ( G  .o  R ) )  ->  ( ( A  .o  D )  .o  ( F  .o  S
) )  =  ( ( B  .o  C
)  .o  ( G  .o  R ) ) )
2 nnmcl 6472 . . . . . . . 8  |-  ( ( A  e.  om  /\  F  e.  om )  ->  ( A  .o  F
)  e.  om )
3 mulpiord 7291 . . . . . . . . 9  |-  ( ( B  e.  N.  /\  G  e.  N. )  ->  ( B  .N  G
)  =  ( B  .o  G ) )
4 mulclpi 7302 . . . . . . . . 9  |-  ( ( B  e.  N.  /\  G  e.  N. )  ->  ( B  .N  G
)  e.  N. )
53, 4eqeltrrd 2253 . . . . . . . 8  |-  ( ( B  e.  N.  /\  G  e.  N. )  ->  ( B  .o  G
)  e.  N. )
62, 5anim12i 338 . . . . . . 7  |-  ( ( ( A  e.  om  /\  F  e.  om )  /\  ( B  e.  N.  /\  G  e.  N. )
)  ->  ( ( A  .o  F )  e. 
om  /\  ( B  .o  G )  e.  N. ) )
76an4s 588 . . . . . 6  |-  ( ( ( A  e.  om  /\  B  e.  N. )  /\  ( F  e.  om  /\  G  e.  N. )
)  ->  ( ( A  .o  F )  e. 
om  /\  ( B  .o  G )  e.  N. ) )
8 nnmcl 6472 . . . . . . . 8  |-  ( ( C  e.  om  /\  R  e.  om )  ->  ( C  .o  R
)  e.  om )
9 mulpiord 7291 . . . . . . . . 9  |-  ( ( D  e.  N.  /\  S  e.  N. )  ->  ( D  .N  S
)  =  ( D  .o  S ) )
10 mulclpi 7302 . . . . . . . . 9  |-  ( ( D  e.  N.  /\  S  e.  N. )  ->  ( D  .N  S
)  e.  N. )
119, 10eqeltrrd 2253 . . . . . . . 8  |-  ( ( D  e.  N.  /\  S  e.  N. )  ->  ( D  .o  S
)  e.  N. )
128, 11anim12i 338 . . . . . . 7  |-  ( ( ( C  e.  om  /\  R  e.  om )  /\  ( D  e.  N.  /\  S  e.  N. )
)  ->  ( ( C  .o  R )  e. 
om  /\  ( D  .o  S )  e.  N. ) )
1312an4s 588 . . . . . 6  |-  ( ( ( C  e.  om  /\  D  e.  N. )  /\  ( R  e.  om  /\  S  e.  N. )
)  ->  ( ( C  .o  R )  e. 
om  /\  ( D  .o  S )  e.  N. ) )
147, 13anim12i 338 . . . . 5  |-  ( ( ( ( A  e. 
om  /\  B  e.  N. )  /\  ( F  e.  om  /\  G  e.  N. ) )  /\  ( ( C  e. 
om  /\  D  e.  N. )  /\  ( R  e.  om  /\  S  e.  N. ) ) )  ->  ( ( ( A  .o  F )  e.  om  /\  ( B  .o  G )  e. 
N. )  /\  (
( C  .o  R
)  e.  om  /\  ( D  .o  S
)  e.  N. )
) )
1514an4s 588 . . . 4  |-  ( ( ( ( A  e. 
om  /\  B  e.  N. )  /\  ( C  e.  om  /\  D  e.  N. ) )  /\  ( ( F  e. 
om  /\  G  e.  N. )  /\  ( R  e.  om  /\  S  e.  N. ) ) )  ->  ( ( ( A  .o  F )  e.  om  /\  ( B  .o  G )  e. 
N. )  /\  (
( C  .o  R
)  e.  om  /\  ( D  .o  S
)  e.  N. )
) )
16 enq0breq 7410 . . . 4  |-  ( ( ( ( A  .o  F )  e.  om  /\  ( B  .o  G
)  e.  N. )  /\  ( ( C  .o  R )  e.  om  /\  ( D  .o  S
)  e.  N. )
)  ->  ( <. ( A  .o  F ) ,  ( B  .o  G ) >. ~Q0 
<. ( C  .o  R
) ,  ( D  .o  S ) >.  <->  ( ( A  .o  F
)  .o  ( D  .o  S ) )  =  ( ( B  .o  G )  .o  ( C  .o  R
) ) ) )
1715, 16syl 14 . . 3  |-  ( ( ( ( A  e. 
om  /\  B  e.  N. )  /\  ( C  e.  om  /\  D  e.  N. ) )  /\  ( ( F  e. 
om  /\  G  e.  N. )  /\  ( R  e.  om  /\  S  e.  N. ) ) )  ->  ( <. ( A  .o  F ) ,  ( B  .o  G
) >. ~Q0  <.
( C  .o  R
) ,  ( D  .o  S ) >.  <->  ( ( A  .o  F
)  .o  ( D  .o  S ) )  =  ( ( B  .o  G )  .o  ( C  .o  R
) ) ) )
18 simplll 533 . . . . 5  |-  ( ( ( ( A  e. 
om  /\  B  e.  N. )  /\  ( C  e.  om  /\  D  e.  N. ) )  /\  ( ( F  e. 
om  /\  G  e.  N. )  /\  ( R  e.  om  /\  S  e.  N. ) ) )  ->  A  e.  om )
19 simprll 537 . . . . 5  |-  ( ( ( ( A  e. 
om  /\  B  e.  N. )  /\  ( C  e.  om  /\  D  e.  N. ) )  /\  ( ( F  e. 
om  /\  G  e.  N. )  /\  ( R  e.  om  /\  S  e.  N. ) ) )  ->  F  e.  om )
20 simplrr 536 . . . . . 6  |-  ( ( ( ( A  e. 
om  /\  B  e.  N. )  /\  ( C  e.  om  /\  D  e.  N. ) )  /\  ( ( F  e. 
om  /\  G  e.  N. )  /\  ( R  e.  om  /\  S  e.  N. ) ) )  ->  D  e.  N. )
21 pinn 7283 . . . . . 6  |-  ( D  e.  N.  ->  D  e.  om )
2220, 21syl 14 . . . . 5  |-  ( ( ( ( A  e. 
om  /\  B  e.  N. )  /\  ( C  e.  om  /\  D  e.  N. ) )  /\  ( ( F  e. 
om  /\  G  e.  N. )  /\  ( R  e.  om  /\  S  e.  N. ) ) )  ->  D  e.  om )
23 nnmcom 6480 . . . . . 6  |-  ( ( x  e.  om  /\  y  e.  om )  ->  ( x  .o  y
)  =  ( y  .o  x ) )
2423adantl 277 . . . . 5  |-  ( ( ( ( ( A  e.  om  /\  B  e.  N. )  /\  ( C  e.  om  /\  D  e.  N. ) )  /\  ( ( F  e. 
om  /\  G  e.  N. )  /\  ( R  e.  om  /\  S  e.  N. ) ) )  /\  ( x  e. 
om  /\  y  e.  om ) )  ->  (
x  .o  y )  =  ( y  .o  x ) )
25 nnmass 6478 . . . . . 6  |-  ( ( x  e.  om  /\  y  e.  om  /\  z  e.  om )  ->  (
( x  .o  y
)  .o  z )  =  ( x  .o  ( y  .o  z
) ) )
2625adantl 277 . . . . 5  |-  ( ( ( ( ( A  e.  om  /\  B  e.  N. )  /\  ( C  e.  om  /\  D  e.  N. ) )  /\  ( ( F  e. 
om  /\  G  e.  N. )  /\  ( R  e.  om  /\  S  e.  N. ) ) )  /\  ( x  e. 
om  /\  y  e.  om 
/\  z  e.  om ) )  ->  (
( x  .o  y
)  .o  z )  =  ( x  .o  ( y  .o  z
) ) )
27 simprrr 540 . . . . . 6  |-  ( ( ( ( A  e. 
om  /\  B  e.  N. )  /\  ( C  e.  om  /\  D  e.  N. ) )  /\  ( ( F  e. 
om  /\  G  e.  N. )  /\  ( R  e.  om  /\  S  e.  N. ) ) )  ->  S  e.  N. )
28 pinn 7283 . . . . . 6  |-  ( S  e.  N.  ->  S  e.  om )
2927, 28syl 14 . . . . 5  |-  ( ( ( ( A  e. 
om  /\  B  e.  N. )  /\  ( C  e.  om  /\  D  e.  N. ) )  /\  ( ( F  e. 
om  /\  G  e.  N. )  /\  ( R  e.  om  /\  S  e.  N. ) ) )  ->  S  e.  om )
30 nnmcl 6472 . . . . . 6  |-  ( ( x  e.  om  /\  y  e.  om )  ->  ( x  .o  y
)  e.  om )
3130adantl 277 . . . . 5  |-  ( ( ( ( ( A  e.  om  /\  B  e.  N. )  /\  ( C  e.  om  /\  D  e.  N. ) )  /\  ( ( F  e. 
om  /\  G  e.  N. )  /\  ( R  e.  om  /\  S  e.  N. ) ) )  /\  ( x  e. 
om  /\  y  e.  om ) )  ->  (
x  .o  y )  e.  om )
3218, 19, 22, 24, 26, 29, 31caov4d 6049 . . . 4  |-  ( ( ( ( A  e. 
om  /\  B  e.  N. )  /\  ( C  e.  om  /\  D  e.  N. ) )  /\  ( ( F  e. 
om  /\  G  e.  N. )  /\  ( R  e.  om  /\  S  e.  N. ) ) )  ->  ( ( A  .o  F )  .o  ( D  .o  S
) )  =  ( ( A  .o  D
)  .o  ( F  .o  S ) ) )
33 simpllr 534 . . . . . 6  |-  ( ( ( ( A  e. 
om  /\  B  e.  N. )  /\  ( C  e.  om  /\  D  e.  N. ) )  /\  ( ( F  e. 
om  /\  G  e.  N. )  /\  ( R  e.  om  /\  S  e.  N. ) ) )  ->  B  e.  N. )
34 pinn 7283 . . . . . 6  |-  ( B  e.  N.  ->  B  e.  om )
3533, 34syl 14 . . . . 5  |-  ( ( ( ( A  e. 
om  /\  B  e.  N. )  /\  ( C  e.  om  /\  D  e.  N. ) )  /\  ( ( F  e. 
om  /\  G  e.  N. )  /\  ( R  e.  om  /\  S  e.  N. ) ) )  ->  B  e.  om )
36 simprlr 538 . . . . . 6  |-  ( ( ( ( A  e. 
om  /\  B  e.  N. )  /\  ( C  e.  om  /\  D  e.  N. ) )  /\  ( ( F  e. 
om  /\  G  e.  N. )  /\  ( R  e.  om  /\  S  e.  N. ) ) )  ->  G  e.  N. )
37 pinn 7283 . . . . . 6  |-  ( G  e.  N.  ->  G  e.  om )
3836, 37syl 14 . . . . 5  |-  ( ( ( ( A  e. 
om  /\  B  e.  N. )  /\  ( C  e.  om  /\  D  e.  N. ) )  /\  ( ( F  e. 
om  /\  G  e.  N. )  /\  ( R  e.  om  /\  S  e.  N. ) ) )  ->  G  e.  om )
39 simplrl 535 . . . . 5  |-  ( ( ( ( A  e. 
om  /\  B  e.  N. )  /\  ( C  e.  om  /\  D  e.  N. ) )  /\  ( ( F  e. 
om  /\  G  e.  N. )  /\  ( R  e.  om  /\  S  e.  N. ) ) )  ->  C  e.  om )
40 simprrl 539 . . . . 5  |-  ( ( ( ( A  e. 
om  /\  B  e.  N. )  /\  ( C  e.  om  /\  D  e.  N. ) )  /\  ( ( F  e. 
om  /\  G  e.  N. )  /\  ( R  e.  om  /\  S  e.  N. ) ) )  ->  R  e.  om )
4135, 38, 39, 24, 26, 40, 31caov4d 6049 . . . 4  |-  ( ( ( ( A  e. 
om  /\  B  e.  N. )  /\  ( C  e.  om  /\  D  e.  N. ) )  /\  ( ( F  e. 
om  /\  G  e.  N. )  /\  ( R  e.  om  /\  S  e.  N. ) ) )  ->  ( ( B  .o  G )  .o  ( C  .o  R
) )  =  ( ( B  .o  C
)  .o  ( G  .o  R ) ) )
4232, 41eqeq12d 2190 . . 3  |-  ( ( ( ( A  e. 
om  /\  B  e.  N. )  /\  ( C  e.  om  /\  D  e.  N. ) )  /\  ( ( F  e. 
om  /\  G  e.  N. )  /\  ( R  e.  om  /\  S  e.  N. ) ) )  ->  ( ( ( A  .o  F )  .o  ( D  .o  S ) )  =  ( ( B  .o  G )  .o  ( C  .o  R ) )  <-> 
( ( A  .o  D )  .o  ( F  .o  S ) )  =  ( ( B  .o  C )  .o  ( G  .o  R
) ) ) )
4317, 42bitrd 188 . 2  |-  ( ( ( ( A  e. 
om  /\  B  e.  N. )  /\  ( C  e.  om  /\  D  e.  N. ) )  /\  ( ( F  e. 
om  /\  G  e.  N. )  /\  ( R  e.  om  /\  S  e.  N. ) ) )  ->  ( <. ( A  .o  F ) ,  ( B  .o  G
) >. ~Q0  <.
( C  .o  R
) ,  ( D  .o  S ) >.  <->  ( ( A  .o  D
)  .o  ( F  .o  S ) )  =  ( ( B  .o  C )  .o  ( G  .o  R
) ) ) )
441, 43syl5ibr 156 1  |-  ( ( ( ( A  e. 
om  /\  B  e.  N. )  /\  ( C  e.  om  /\  D  e.  N. ) )  /\  ( ( F  e. 
om  /\  G  e.  N. )  /\  ( R  e.  om  /\  S  e.  N. ) ) )  ->  ( ( ( A  .o  D )  =  ( B  .o  C )  /\  ( F  .o  S )  =  ( G  .o  R
) )  ->  <. ( A  .o  F ) ,  ( B  .o  G
) >. ~Q0  <.
( C  .o  R
) ,  ( D  .o  S ) >.
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 978    = wceq 1353    e. wcel 2146   <.cop 3592   class class class wbr 3998   omcom 4583  (class class class)co 5865    .o comu 6405   N.cnpi 7246    .N cmi 7248   ~Q0 ceq0 7260
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1445  ax-7 1446  ax-gen 1447  ax-ie1 1491  ax-ie2 1492  ax-8 1502  ax-10 1503  ax-11 1504  ax-i12 1505  ax-bndl 1507  ax-4 1508  ax-17 1524  ax-i9 1528  ax-ial 1532  ax-i5r 1533  ax-13 2148  ax-14 2149  ax-ext 2157  ax-coll 4113  ax-sep 4116  ax-nul 4124  ax-pow 4169  ax-pr 4203  ax-un 4427  ax-setind 4530  ax-iinf 4581
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1459  df-sb 1761  df-eu 2027  df-mo 2028  df-clab 2162  df-cleq 2168  df-clel 2171  df-nfc 2306  df-ne 2346  df-ral 2458  df-rex 2459  df-reu 2460  df-rab 2462  df-v 2737  df-sbc 2961  df-csb 3056  df-dif 3129  df-un 3131  df-in 3133  df-ss 3140  df-nul 3421  df-pw 3574  df-sn 3595  df-pr 3596  df-op 3598  df-uni 3806  df-int 3841  df-iun 3884  df-br 3999  df-opab 4060  df-mpt 4061  df-tr 4097  df-id 4287  df-iord 4360  df-on 4362  df-suc 4365  df-iom 4584  df-xp 4626  df-rel 4627  df-cnv 4628  df-co 4629  df-dm 4630  df-rn 4631  df-res 4632  df-ima 4633  df-iota 5170  df-fun 5210  df-fn 5211  df-f 5212  df-f1 5213  df-fo 5214  df-f1o 5215  df-fv 5216  df-ov 5868  df-oprab 5869  df-mpo 5870  df-1st 6131  df-2nd 6132  df-recs 6296  df-irdg 6361  df-oadd 6411  df-omul 6412  df-ni 7278  df-mi 7280  df-enq0 7398
This theorem is referenced by:  mulnq0mo  7422
  Copyright terms: Public domain W3C validator