Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > mulcmpblnq0 | Unicode version |
Description: Lemma showing compatibility of multiplication on nonnegative fractions. (Contributed by Jim Kingdon, 20-Nov-2019.) |
Ref | Expression |
---|---|
mulcmpblnq0 | ~Q0 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oveq12 5851 | . 2 | |
2 | nnmcl 6449 | . . . . . . . 8 | |
3 | mulpiord 7258 | . . . . . . . . 9 | |
4 | mulclpi 7269 | . . . . . . . . 9 | |
5 | 3, 4 | eqeltrrd 2244 | . . . . . . . 8 |
6 | 2, 5 | anim12i 336 | . . . . . . 7 |
7 | 6 | an4s 578 | . . . . . 6 |
8 | nnmcl 6449 | . . . . . . . 8 | |
9 | mulpiord 7258 | . . . . . . . . 9 | |
10 | mulclpi 7269 | . . . . . . . . 9 | |
11 | 9, 10 | eqeltrrd 2244 | . . . . . . . 8 |
12 | 8, 11 | anim12i 336 | . . . . . . 7 |
13 | 12 | an4s 578 | . . . . . 6 |
14 | 7, 13 | anim12i 336 | . . . . 5 |
15 | 14 | an4s 578 | . . . 4 |
16 | enq0breq 7377 | . . . 4 ~Q0 | |
17 | 15, 16 | syl 14 | . . 3 ~Q0 |
18 | simplll 523 | . . . . 5 | |
19 | simprll 527 | . . . . 5 | |
20 | simplrr 526 | . . . . . 6 | |
21 | pinn 7250 | . . . . . 6 | |
22 | 20, 21 | syl 14 | . . . . 5 |
23 | nnmcom 6457 | . . . . . 6 | |
24 | 23 | adantl 275 | . . . . 5 |
25 | nnmass 6455 | . . . . . 6 | |
26 | 25 | adantl 275 | . . . . 5 |
27 | simprrr 530 | . . . . . 6 | |
28 | pinn 7250 | . . . . . 6 | |
29 | 27, 28 | syl 14 | . . . . 5 |
30 | nnmcl 6449 | . . . . . 6 | |
31 | 30 | adantl 275 | . . . . 5 |
32 | 18, 19, 22, 24, 26, 29, 31 | caov4d 6026 | . . . 4 |
33 | simpllr 524 | . . . . . 6 | |
34 | pinn 7250 | . . . . . 6 | |
35 | 33, 34 | syl 14 | . . . . 5 |
36 | simprlr 528 | . . . . . 6 | |
37 | pinn 7250 | . . . . . 6 | |
38 | 36, 37 | syl 14 | . . . . 5 |
39 | simplrl 525 | . . . . 5 | |
40 | simprrl 529 | . . . . 5 | |
41 | 35, 38, 39, 24, 26, 40, 31 | caov4d 6026 | . . . 4 |
42 | 32, 41 | eqeq12d 2180 | . . 3 |
43 | 17, 42 | bitrd 187 | . 2 ~Q0 |
44 | 1, 43 | syl5ibr 155 | 1 ~Q0 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 w3a 968 wceq 1343 wcel 2136 cop 3579 class class class wbr 3982 com 4567 (class class class)co 5842 comu 6382 cnpi 7213 cmi 7215 ~Q0 ceq0 7227 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-coll 4097 ax-sep 4100 ax-nul 4108 ax-pow 4153 ax-pr 4187 ax-un 4411 ax-setind 4514 ax-iinf 4565 |
This theorem depends on definitions: df-bi 116 df-dc 825 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-ral 2449 df-rex 2450 df-reu 2451 df-rab 2453 df-v 2728 df-sbc 2952 df-csb 3046 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-nul 3410 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-int 3825 df-iun 3868 df-br 3983 df-opab 4044 df-mpt 4045 df-tr 4081 df-id 4271 df-iord 4344 df-on 4346 df-suc 4349 df-iom 4568 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-res 4616 df-ima 4617 df-iota 5153 df-fun 5190 df-fn 5191 df-f 5192 df-f1 5193 df-fo 5194 df-f1o 5195 df-fv 5196 df-ov 5845 df-oprab 5846 df-mpo 5847 df-1st 6108 df-2nd 6109 df-recs 6273 df-irdg 6338 df-oadd 6388 df-omul 6389 df-ni 7245 df-mi 7247 df-enq0 7365 |
This theorem is referenced by: mulnq0mo 7389 |
Copyright terms: Public domain | W3C validator |