Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > mulcmpblnq0 | Unicode version |
Description: Lemma showing compatibility of multiplication on nonnegative fractions. (Contributed by Jim Kingdon, 20-Nov-2019.) |
Ref | Expression |
---|---|
mulcmpblnq0 | ~Q0 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oveq12 5859 | . 2 | |
2 | nnmcl 6457 | . . . . . . . 8 | |
3 | mulpiord 7266 | . . . . . . . . 9 | |
4 | mulclpi 7277 | . . . . . . . . 9 | |
5 | 3, 4 | eqeltrrd 2248 | . . . . . . . 8 |
6 | 2, 5 | anim12i 336 | . . . . . . 7 |
7 | 6 | an4s 583 | . . . . . 6 |
8 | nnmcl 6457 | . . . . . . . 8 | |
9 | mulpiord 7266 | . . . . . . . . 9 | |
10 | mulclpi 7277 | . . . . . . . . 9 | |
11 | 9, 10 | eqeltrrd 2248 | . . . . . . . 8 |
12 | 8, 11 | anim12i 336 | . . . . . . 7 |
13 | 12 | an4s 583 | . . . . . 6 |
14 | 7, 13 | anim12i 336 | . . . . 5 |
15 | 14 | an4s 583 | . . . 4 |
16 | enq0breq 7385 | . . . 4 ~Q0 | |
17 | 15, 16 | syl 14 | . . 3 ~Q0 |
18 | simplll 528 | . . . . 5 | |
19 | simprll 532 | . . . . 5 | |
20 | simplrr 531 | . . . . . 6 | |
21 | pinn 7258 | . . . . . 6 | |
22 | 20, 21 | syl 14 | . . . . 5 |
23 | nnmcom 6465 | . . . . . 6 | |
24 | 23 | adantl 275 | . . . . 5 |
25 | nnmass 6463 | . . . . . 6 | |
26 | 25 | adantl 275 | . . . . 5 |
27 | simprrr 535 | . . . . . 6 | |
28 | pinn 7258 | . . . . . 6 | |
29 | 27, 28 | syl 14 | . . . . 5 |
30 | nnmcl 6457 | . . . . . 6 | |
31 | 30 | adantl 275 | . . . . 5 |
32 | 18, 19, 22, 24, 26, 29, 31 | caov4d 6034 | . . . 4 |
33 | simpllr 529 | . . . . . 6 | |
34 | pinn 7258 | . . . . . 6 | |
35 | 33, 34 | syl 14 | . . . . 5 |
36 | simprlr 533 | . . . . . 6 | |
37 | pinn 7258 | . . . . . 6 | |
38 | 36, 37 | syl 14 | . . . . 5 |
39 | simplrl 530 | . . . . 5 | |
40 | simprrl 534 | . . . . 5 | |
41 | 35, 38, 39, 24, 26, 40, 31 | caov4d 6034 | . . . 4 |
42 | 32, 41 | eqeq12d 2185 | . . 3 |
43 | 17, 42 | bitrd 187 | . 2 ~Q0 |
44 | 1, 43 | syl5ibr 155 | 1 ~Q0 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 w3a 973 wceq 1348 wcel 2141 cop 3584 class class class wbr 3987 com 4572 (class class class)co 5850 comu 6390 cnpi 7221 cmi 7223 ~Q0 ceq0 7235 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-coll 4102 ax-sep 4105 ax-nul 4113 ax-pow 4158 ax-pr 4192 ax-un 4416 ax-setind 4519 ax-iinf 4570 |
This theorem depends on definitions: df-bi 116 df-dc 830 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-ral 2453 df-rex 2454 df-reu 2455 df-rab 2457 df-v 2732 df-sbc 2956 df-csb 3050 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-nul 3415 df-pw 3566 df-sn 3587 df-pr 3588 df-op 3590 df-uni 3795 df-int 3830 df-iun 3873 df-br 3988 df-opab 4049 df-mpt 4050 df-tr 4086 df-id 4276 df-iord 4349 df-on 4351 df-suc 4354 df-iom 4573 df-xp 4615 df-rel 4616 df-cnv 4617 df-co 4618 df-dm 4619 df-rn 4620 df-res 4621 df-ima 4622 df-iota 5158 df-fun 5198 df-fn 5199 df-f 5200 df-f1 5201 df-fo 5202 df-f1o 5203 df-fv 5204 df-ov 5853 df-oprab 5854 df-mpo 5855 df-1st 6116 df-2nd 6117 df-recs 6281 df-irdg 6346 df-oadd 6396 df-omul 6397 df-ni 7253 df-mi 7255 df-enq0 7373 |
This theorem is referenced by: mulnq0mo 7397 |
Copyright terms: Public domain | W3C validator |