Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > mulcmpblnq0 | Unicode version |
Description: Lemma showing compatibility of multiplication on nonnegative fractions. (Contributed by Jim Kingdon, 20-Nov-2019.) |
Ref | Expression |
---|---|
mulcmpblnq0 | ~Q0 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oveq12 5874 | . 2 | |
2 | nnmcl 6472 | . . . . . . . 8 | |
3 | mulpiord 7291 | . . . . . . . . 9 | |
4 | mulclpi 7302 | . . . . . . . . 9 | |
5 | 3, 4 | eqeltrrd 2253 | . . . . . . . 8 |
6 | 2, 5 | anim12i 338 | . . . . . . 7 |
7 | 6 | an4s 588 | . . . . . 6 |
8 | nnmcl 6472 | . . . . . . . 8 | |
9 | mulpiord 7291 | . . . . . . . . 9 | |
10 | mulclpi 7302 | . . . . . . . . 9 | |
11 | 9, 10 | eqeltrrd 2253 | . . . . . . . 8 |
12 | 8, 11 | anim12i 338 | . . . . . . 7 |
13 | 12 | an4s 588 | . . . . . 6 |
14 | 7, 13 | anim12i 338 | . . . . 5 |
15 | 14 | an4s 588 | . . . 4 |
16 | enq0breq 7410 | . . . 4 ~Q0 | |
17 | 15, 16 | syl 14 | . . 3 ~Q0 |
18 | simplll 533 | . . . . 5 | |
19 | simprll 537 | . . . . 5 | |
20 | simplrr 536 | . . . . . 6 | |
21 | pinn 7283 | . . . . . 6 | |
22 | 20, 21 | syl 14 | . . . . 5 |
23 | nnmcom 6480 | . . . . . 6 | |
24 | 23 | adantl 277 | . . . . 5 |
25 | nnmass 6478 | . . . . . 6 | |
26 | 25 | adantl 277 | . . . . 5 |
27 | simprrr 540 | . . . . . 6 | |
28 | pinn 7283 | . . . . . 6 | |
29 | 27, 28 | syl 14 | . . . . 5 |
30 | nnmcl 6472 | . . . . . 6 | |
31 | 30 | adantl 277 | . . . . 5 |
32 | 18, 19, 22, 24, 26, 29, 31 | caov4d 6049 | . . . 4 |
33 | simpllr 534 | . . . . . 6 | |
34 | pinn 7283 | . . . . . 6 | |
35 | 33, 34 | syl 14 | . . . . 5 |
36 | simprlr 538 | . . . . . 6 | |
37 | pinn 7283 | . . . . . 6 | |
38 | 36, 37 | syl 14 | . . . . 5 |
39 | simplrl 535 | . . . . 5 | |
40 | simprrl 539 | . . . . 5 | |
41 | 35, 38, 39, 24, 26, 40, 31 | caov4d 6049 | . . . 4 |
42 | 32, 41 | eqeq12d 2190 | . . 3 |
43 | 17, 42 | bitrd 188 | . 2 ~Q0 |
44 | 1, 43 | syl5ibr 156 | 1 ~Q0 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 104 wb 105 w3a 978 wceq 1353 wcel 2146 cop 3592 class class class wbr 3998 com 4583 (class class class)co 5865 comu 6405 cnpi 7246 cmi 7248 ~Q0 ceq0 7260 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-13 2148 ax-14 2149 ax-ext 2157 ax-coll 4113 ax-sep 4116 ax-nul 4124 ax-pow 4169 ax-pr 4203 ax-un 4427 ax-setind 4530 ax-iinf 4581 |
This theorem depends on definitions: df-bi 117 df-dc 835 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1459 df-sb 1761 df-eu 2027 df-mo 2028 df-clab 2162 df-cleq 2168 df-clel 2171 df-nfc 2306 df-ne 2346 df-ral 2458 df-rex 2459 df-reu 2460 df-rab 2462 df-v 2737 df-sbc 2961 df-csb 3056 df-dif 3129 df-un 3131 df-in 3133 df-ss 3140 df-nul 3421 df-pw 3574 df-sn 3595 df-pr 3596 df-op 3598 df-uni 3806 df-int 3841 df-iun 3884 df-br 3999 df-opab 4060 df-mpt 4061 df-tr 4097 df-id 4287 df-iord 4360 df-on 4362 df-suc 4365 df-iom 4584 df-xp 4626 df-rel 4627 df-cnv 4628 df-co 4629 df-dm 4630 df-rn 4631 df-res 4632 df-ima 4633 df-iota 5170 df-fun 5210 df-fn 5211 df-f 5212 df-f1 5213 df-fo 5214 df-f1o 5215 df-fv 5216 df-ov 5868 df-oprab 5869 df-mpo 5870 df-1st 6131 df-2nd 6132 df-recs 6296 df-irdg 6361 df-oadd 6411 df-omul 6412 df-ni 7278 df-mi 7280 df-enq0 7398 |
This theorem is referenced by: mulnq0mo 7422 |
Copyright terms: Public domain | W3C validator |