ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  enq0eceq Unicode version

Theorem enq0eceq 7399
Description: Equivalence class equality of nonnegative fractions in terms of natural numbers. (Contributed by Jim Kingdon, 24-Nov-2019.)
Assertion
Ref Expression
enq0eceq  |-  ( ( ( A  e.  om  /\  B  e.  N. )  /\  ( C  e.  om  /\  D  e.  N. )
)  ->  ( [ <. A ,  B >. ] ~Q0  =  [ <. C ,  D >. ] ~Q0  <->  ( A  .o  D )  =  ( B  .o  C ) ) )

Proof of Theorem enq0eceq
StepHypRef Expression
1 enq0er 7397 . . . 4  |- ~Q0  Er  ( om  X.  N. )
21a1i 9 . . 3  |-  ( ( ( A  e.  om  /\  B  e.  N. )  /\  ( C  e.  om  /\  D  e.  N. )
)  -> ~Q0  Er  ( om  X.  N. ) )
3 opelxpi 4643 . . . 4  |-  ( ( A  e.  om  /\  B  e.  N. )  -> 
<. A ,  B >.  e.  ( om  X.  N. ) )
43adantr 274 . . 3  |-  ( ( ( A  e.  om  /\  B  e.  N. )  /\  ( C  e.  om  /\  D  e.  N. )
)  ->  <. A ,  B >.  e.  ( om 
X.  N. ) )
52, 4erth 6557 . 2  |-  ( ( ( A  e.  om  /\  B  e.  N. )  /\  ( C  e.  om  /\  D  e.  N. )
)  ->  ( <. A ,  B >. ~Q0 
<. C ,  D >.  <->  [ <. A ,  B >. ] ~Q0  =  [ <. C ,  D >. ] ~Q0  ) )
6 enq0breq 7398 . 2  |-  ( ( ( A  e.  om  /\  B  e.  N. )  /\  ( C  e.  om  /\  D  e.  N. )
)  ->  ( <. A ,  B >. ~Q0 
<. C ,  D >.  <->  ( A  .o  D )  =  ( B  .o  C
) ) )
75, 6bitr3d 189 1  |-  ( ( ( A  e.  om  /\  B  e.  N. )  /\  ( C  e.  om  /\  D  e.  N. )
)  ->  ( [ <. A ,  B >. ] ~Q0  =  [ <. C ,  D >. ] ~Q0  <->  ( A  .o  D )  =  ( B  .o  C ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1348    e. wcel 2141   <.cop 3586   class class class wbr 3989   omcom 4574    X. cxp 4609  (class class class)co 5853    .o comu 6393    Er wer 6510   [cec 6511   N.cnpi 7234   ~Q0 ceq0 7248
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-coll 4104  ax-sep 4107  ax-nul 4115  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521  ax-iinf 4572
This theorem depends on definitions:  df-bi 116  df-dc 830  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-ral 2453  df-rex 2454  df-reu 2455  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-int 3832  df-iun 3875  df-br 3990  df-opab 4051  df-mpt 4052  df-tr 4088  df-id 4278  df-iord 4351  df-on 4353  df-suc 4356  df-iom 4575  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-f1 5203  df-fo 5204  df-f1o 5205  df-fv 5206  df-ov 5856  df-oprab 5857  df-mpo 5858  df-1st 6119  df-2nd 6120  df-recs 6284  df-irdg 6349  df-oadd 6399  df-omul 6400  df-er 6513  df-ec 6515  df-ni 7266  df-enq0 7386
This theorem is referenced by:  nq0m0r  7418
  Copyright terms: Public domain W3C validator