ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ensn1g GIF version

Theorem ensn1g 6466
Description: A singleton is equinumerous to ordinal one. (Contributed by NM, 23-Apr-2004.)
Assertion
Ref Expression
ensn1g (𝐴𝑉 → {𝐴} ≈ 1𝑜)

Proof of Theorem ensn1g
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 sneq 3442 . . 3 (𝑥 = 𝐴 → {𝑥} = {𝐴})
21breq1d 3830 . 2 (𝑥 = 𝐴 → ({𝑥} ≈ 1𝑜 ↔ {𝐴} ≈ 1𝑜))
3 vex 2618 . . 3 𝑥 ∈ V
43ensn1 6465 . 2 {𝑥} ≈ 1𝑜
52, 4vtoclg 2672 1 (𝐴𝑉 → {𝐴} ≈ 1𝑜)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1287  wcel 1436  {csn 3431   class class class wbr 3820  1𝑜c1o 6128  cen 6407
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 577  ax-in2 578  ax-io 663  ax-5 1379  ax-7 1380  ax-gen 1381  ax-ie1 1425  ax-ie2 1426  ax-8 1438  ax-10 1439  ax-11 1440  ax-i12 1441  ax-bndl 1442  ax-4 1443  ax-13 1447  ax-14 1448  ax-17 1462  ax-i9 1466  ax-ial 1470  ax-i5r 1471  ax-ext 2067  ax-sep 3932  ax-nul 3940  ax-pow 3984  ax-pr 4010  ax-un 4234
This theorem depends on definitions:  df-bi 115  df-3an 924  df-tru 1290  df-nf 1393  df-sb 1690  df-eu 1948  df-mo 1949  df-clab 2072  df-cleq 2078  df-clel 2081  df-nfc 2214  df-ral 2360  df-rex 2361  df-v 2617  df-dif 2990  df-un 2992  df-in 2994  df-ss 3001  df-nul 3276  df-pw 3417  df-sn 3437  df-pr 3438  df-op 3440  df-uni 3637  df-br 3821  df-opab 3875  df-id 4094  df-suc 4172  df-xp 4417  df-rel 4418  df-cnv 4419  df-co 4420  df-dm 4421  df-rn 4422  df-fun 4983  df-fn 4984  df-f 4985  df-f1 4986  df-fo 4987  df-f1o 4988  df-1o 6135  df-en 6410
This theorem is referenced by:  enpr1g  6467  en1bg  6469  en2sn  6482  snfig  6483  snnen2og  6527  en1eqsn  6606  en1eqsnbi  6607  pr2nelem  6763
  Copyright terms: Public domain W3C validator