| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ensn1g | GIF version | ||
| Description: A singleton is equinumerous to ordinal one. (Contributed by NM, 23-Apr-2004.) |
| Ref | Expression |
|---|---|
| ensn1g | ⊢ (𝐴 ∈ 𝑉 → {𝐴} ≈ 1o) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sneq 3677 | . . 3 ⊢ (𝑥 = 𝐴 → {𝑥} = {𝐴}) | |
| 2 | 1 | breq1d 4093 | . 2 ⊢ (𝑥 = 𝐴 → ({𝑥} ≈ 1o ↔ {𝐴} ≈ 1o)) |
| 3 | vex 2802 | . . 3 ⊢ 𝑥 ∈ V | |
| 4 | 3 | ensn1 6956 | . 2 ⊢ {𝑥} ≈ 1o |
| 5 | 2, 4 | vtoclg 2861 | 1 ⊢ (𝐴 ∈ 𝑉 → {𝐴} ≈ 1o) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1395 ∈ wcel 2200 {csn 3666 class class class wbr 4083 1oc1o 6561 ≈ cen 6893 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-nul 4210 ax-pow 4258 ax-pr 4293 ax-un 4524 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-v 2801 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-br 4084 df-opab 4146 df-id 4384 df-suc 4462 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-fun 5320 df-fn 5321 df-f 5322 df-f1 5323 df-fo 5324 df-f1o 5325 df-1o 6568 df-en 6896 |
| This theorem is referenced by: enpr1g 6958 en1bg 6960 en2sn 6974 snfig 6975 enpr2d 6980 snnen2og 7028 en1eqsn 7123 en1eqsnbi 7124 pr2nelem 7372 dju1en 7403 triv1nsgd 13763 |
| Copyright terms: Public domain | W3C validator |