| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ensn1g | GIF version | ||
| Description: A singleton is equinumerous to ordinal one. (Contributed by NM, 23-Apr-2004.) |
| Ref | Expression |
|---|---|
| ensn1g | ⊢ (𝐴 ∈ 𝑉 → {𝐴} ≈ 1o) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sneq 3646 | . . 3 ⊢ (𝑥 = 𝐴 → {𝑥} = {𝐴}) | |
| 2 | 1 | breq1d 4058 | . 2 ⊢ (𝑥 = 𝐴 → ({𝑥} ≈ 1o ↔ {𝐴} ≈ 1o)) |
| 3 | vex 2776 | . . 3 ⊢ 𝑥 ∈ V | |
| 4 | 3 | ensn1 6898 | . 2 ⊢ {𝑥} ≈ 1o |
| 5 | 2, 4 | vtoclg 2835 | 1 ⊢ (𝐴 ∈ 𝑉 → {𝐴} ≈ 1o) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1373 ∈ wcel 2177 {csn 3635 class class class wbr 4048 1oc1o 6505 ≈ cen 6835 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-sep 4167 ax-nul 4175 ax-pow 4223 ax-pr 4258 ax-un 4485 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ral 2490 df-rex 2491 df-v 2775 df-dif 3170 df-un 3172 df-in 3174 df-ss 3181 df-nul 3463 df-pw 3620 df-sn 3641 df-pr 3642 df-op 3644 df-uni 3854 df-br 4049 df-opab 4111 df-id 4345 df-suc 4423 df-xp 4686 df-rel 4687 df-cnv 4688 df-co 4689 df-dm 4690 df-rn 4691 df-fun 5279 df-fn 5280 df-f 5281 df-f1 5282 df-fo 5283 df-f1o 5284 df-1o 6512 df-en 6838 |
| This theorem is referenced by: enpr1g 6900 en1bg 6902 en2sn 6916 snfig 6917 enpr2d 6922 snnen2og 6968 en1eqsn 7062 en1eqsnbi 7063 pr2nelem 7311 dju1en 7338 triv1nsgd 13604 |
| Copyright terms: Public domain | W3C validator |