ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ensn1g GIF version

Theorem ensn1g 6810
Description: A singleton is equinumerous to ordinal one. (Contributed by NM, 23-Apr-2004.)
Assertion
Ref Expression
ensn1g (𝐴𝑉 → {𝐴} ≈ 1o)

Proof of Theorem ensn1g
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 sneq 3615 . . 3 (𝑥 = 𝐴 → {𝑥} = {𝐴})
21breq1d 4025 . 2 (𝑥 = 𝐴 → ({𝑥} ≈ 1o ↔ {𝐴} ≈ 1o))
3 vex 2752 . . 3 𝑥 ∈ V
43ensn1 6809 . 2 {𝑥} ≈ 1o
52, 4vtoclg 2809 1 (𝐴𝑉 → {𝐴} ≈ 1o)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1363  wcel 2158  {csn 3604   class class class wbr 4015  1oc1o 6423  cen 6751
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1457  ax-7 1458  ax-gen 1459  ax-ie1 1503  ax-ie2 1504  ax-8 1514  ax-10 1515  ax-11 1516  ax-i12 1517  ax-bndl 1519  ax-4 1520  ax-17 1536  ax-i9 1540  ax-ial 1544  ax-i5r 1545  ax-13 2160  ax-14 2161  ax-ext 2169  ax-sep 4133  ax-nul 4141  ax-pow 4186  ax-pr 4221  ax-un 4445
This theorem depends on definitions:  df-bi 117  df-3an 981  df-tru 1366  df-nf 1471  df-sb 1773  df-eu 2039  df-mo 2040  df-clab 2174  df-cleq 2180  df-clel 2183  df-nfc 2318  df-ral 2470  df-rex 2471  df-v 2751  df-dif 3143  df-un 3145  df-in 3147  df-ss 3154  df-nul 3435  df-pw 3589  df-sn 3610  df-pr 3611  df-op 3613  df-uni 3822  df-br 4016  df-opab 4077  df-id 4305  df-suc 4383  df-xp 4644  df-rel 4645  df-cnv 4646  df-co 4647  df-dm 4648  df-rn 4649  df-fun 5230  df-fn 5231  df-f 5232  df-f1 5233  df-fo 5234  df-f1o 5235  df-1o 6430  df-en 6754
This theorem is referenced by:  enpr1g  6811  en1bg  6813  en2sn  6826  snfig  6827  enpr2d  6830  snnen2og  6872  en1eqsn  6960  en1eqsnbi  6961  pr2nelem  7203  dju1en  7225  triv1nsgd  13109
  Copyright terms: Public domain W3C validator