ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ensymi GIF version

Theorem ensymi 6838
Description: Symmetry of equinumerosity. Theorem 2 of [Suppes] p. 92. (Contributed by NM, 25-Sep-2004.)
Hypothesis
Ref Expression
ensymi.2 𝐴𝐵
Assertion
Ref Expression
ensymi 𝐵𝐴

Proof of Theorem ensymi
StepHypRef Expression
1 ensymi.2 . 2 𝐴𝐵
2 ensym 6837 . 2 (𝐴𝐵𝐵𝐴)
31, 2ax-mp 5 1 𝐵𝐴
Colors of variables: wff set class
Syntax hints:   class class class wbr 4030  cen 6794
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4148  ax-pow 4204  ax-pr 4239  ax-un 4465
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-v 2762  df-un 3158  df-in 3160  df-ss 3167  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-br 4031  df-opab 4092  df-id 4325  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-ima 4673  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-er 6589  df-en 6797
This theorem is referenced by:  entr2i  6843  entr3i  6844  entr4i  6845  omp1eom  7156  pm54.43  7252  dju1p1e2  7259  pw1dom2  7289  1nprm  12255  unennn  12557  ennnfonelemen  12581  ennnfonelemim  12584  exmidunben  12586  qnnen  12591  ctiunct  12600  nninfdc  12613  iooreen  15595
  Copyright terms: Public domain W3C validator