| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ensymi | GIF version | ||
| Description: Symmetry of equinumerosity. Theorem 2 of [Suppes] p. 92. (Contributed by NM, 25-Sep-2004.) |
| Ref | Expression |
|---|---|
| ensymi.2 | ⊢ 𝐴 ≈ 𝐵 |
| Ref | Expression |
|---|---|
| ensymi | ⊢ 𝐵 ≈ 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ensymi.2 | . 2 ⊢ 𝐴 ≈ 𝐵 | |
| 2 | ensym 6923 | . 2 ⊢ (𝐴 ≈ 𝐵 → 𝐵 ≈ 𝐴) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ 𝐵 ≈ 𝐴 |
| Colors of variables: wff set class |
| Syntax hints: class class class wbr 4082 ≈ cen 6875 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-pow 4257 ax-pr 4292 ax-un 4521 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-v 2801 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-br 4083 df-opab 4145 df-id 4381 df-xp 4722 df-rel 4723 df-cnv 4724 df-co 4725 df-dm 4726 df-rn 4727 df-res 4728 df-ima 4729 df-fun 5316 df-fn 5317 df-f 5318 df-f1 5319 df-fo 5320 df-f1o 5321 df-er 6670 df-en 6878 |
| This theorem is referenced by: entr2i 6929 entr3i 6930 entr4i 6931 omp1eom 7250 pm54.43 7351 dju1p1e2 7363 pw1dom2 7400 1nprm 12622 unennn 12954 ennnfonelemen 12978 ennnfonelemim 12981 exmidunben 12983 qnnen 12988 ctiunct 12997 nninfdc 13010 umgredgnlp 15935 iooreen 16334 |
| Copyright terms: Public domain | W3C validator |