ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ensymi GIF version

Theorem ensymi 6884
Description: Symmetry of equinumerosity. Theorem 2 of [Suppes] p. 92. (Contributed by NM, 25-Sep-2004.)
Hypothesis
Ref Expression
ensymi.2 𝐴𝐵
Assertion
Ref Expression
ensymi 𝐵𝐴

Proof of Theorem ensymi
StepHypRef Expression
1 ensymi.2 . 2 𝐴𝐵
2 ensym 6883 . 2 (𝐴𝐵𝐵𝐴)
31, 2ax-mp 5 1 𝐵𝐴
Colors of variables: wff set class
Syntax hints:   class class class wbr 4048  cen 6835
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-sep 4167  ax-pow 4223  ax-pr 4258  ax-un 4485
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ral 2490  df-rex 2491  df-v 2775  df-un 3172  df-in 3174  df-ss 3181  df-pw 3620  df-sn 3641  df-pr 3642  df-op 3644  df-uni 3854  df-br 4049  df-opab 4111  df-id 4345  df-xp 4686  df-rel 4687  df-cnv 4688  df-co 4689  df-dm 4690  df-rn 4691  df-res 4692  df-ima 4693  df-fun 5279  df-fn 5280  df-f 5281  df-f1 5282  df-fo 5283  df-f1o 5284  df-er 6630  df-en 6838
This theorem is referenced by:  entr2i  6889  entr3i  6890  entr4i  6891  omp1eom  7209  pm54.43  7310  dju1p1e2  7318  pw1dom2  7352  1nprm  12486  unennn  12818  ennnfonelemen  12842  ennnfonelemim  12845  exmidunben  12847  qnnen  12852  ctiunct  12861  nninfdc  12874  iooreen  16089
  Copyright terms: Public domain W3C validator