ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  enwomni Unicode version

Theorem enwomni 7168
Description: Weak omniscience is invariant with respect to equinumerosity. For example, this means that we can express the Weak Limited Principle of Omniscience as either  om  e. WOmni or  NN0  e. WOmni. The former is a better match to conventional notation in the sense that df2o3 6431 says that  2o  =  { (/)
,  1o } whereas the corresponding relationship does not exist between  2 and  { 0 ,  1 }. (Contributed by Jim Kingdon, 20-Jun-2024.)
Assertion
Ref Expression
enwomni  |-  ( A 
~~  B  ->  ( A  e. WOmni  <->  B  e. WOmni ) )

Proof of Theorem enwomni
StepHypRef Expression
1 enwomnilem 7167 . 2  |-  ( A 
~~  B  ->  ( A  e. WOmni  ->  B  e. WOmni
) )
2 ensym 6781 . . 3  |-  ( A 
~~  B  ->  B  ~~  A )
3 enwomnilem 7167 . . 3  |-  ( B 
~~  A  ->  ( B  e. WOmni  ->  A  e. WOmni
) )
42, 3syl 14 . 2  |-  ( A 
~~  B  ->  ( B  e. WOmni  ->  A  e. WOmni
) )
51, 4impbid 129 1  |-  ( A 
~~  B  ->  ( A  e. WOmni  <->  B  e. WOmni ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105    e. wcel 2148   class class class wbr 4004    ~~ cen 6738  WOmnicwomni 7161
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4122  ax-nul 4130  ax-pow 4175  ax-pr 4210  ax-un 4434  ax-setind 4537
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-ral 2460  df-rex 2461  df-v 2740  df-sbc 2964  df-dif 3132  df-un 3134  df-in 3136  df-ss 3143  df-nul 3424  df-pw 3578  df-sn 3599  df-pr 3600  df-op 3602  df-uni 3811  df-int 3846  df-br 4005  df-opab 4066  df-id 4294  df-suc 4372  df-iom 4591  df-xp 4633  df-rel 4634  df-cnv 4635  df-co 4636  df-dm 4637  df-rn 4638  df-res 4639  df-ima 4640  df-iota 5179  df-fun 5219  df-fn 5220  df-f 5221  df-f1 5222  df-fo 5223  df-f1o 5224  df-fv 5225  df-ov 5878  df-oprab 5879  df-mpo 5880  df-1o 6417  df-2o 6418  df-er 6535  df-map 6650  df-en 6741  df-womni 7162
This theorem is referenced by:  redcwlpo  14806  nconstwlpo  14816
  Copyright terms: Public domain W3C validator