Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > enwomni | Unicode version |
Description: Weak omniscience is invariant with respect to equinumerosity. For example, this means that we can express the Weak Limited Principle of Omniscience as either WOmni or WOmni. The former is a better match to conventional notation in the sense that df2o3 6398 says that whereas the corresponding relationship does not exist between and . (Contributed by Jim Kingdon, 20-Jun-2024.) |
Ref | Expression |
---|---|
enwomni | WOmni WOmni |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | enwomnilem 7133 | . 2 WOmni WOmni | |
2 | ensym 6747 | . . 3 | |
3 | enwomnilem 7133 | . . 3 WOmni WOmni | |
4 | 2, 3 | syl 14 | . 2 WOmni WOmni |
5 | 1, 4 | impbid 128 | 1 WOmni WOmni |
Colors of variables: wff set class |
Syntax hints: wi 4 wb 104 wcel 2136 class class class wbr 3982 cen 6704 WOmnicwomni 7127 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-nul 4108 ax-pow 4153 ax-pr 4187 ax-un 4411 ax-setind 4514 |
This theorem depends on definitions: df-bi 116 df-dc 825 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-ral 2449 df-rex 2450 df-v 2728 df-sbc 2952 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-nul 3410 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-int 3825 df-br 3983 df-opab 4044 df-id 4271 df-suc 4349 df-iom 4568 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-res 4616 df-ima 4617 df-iota 5153 df-fun 5190 df-fn 5191 df-f 5192 df-f1 5193 df-fo 5194 df-f1o 5195 df-fv 5196 df-ov 5845 df-oprab 5846 df-mpo 5847 df-1o 6384 df-2o 6385 df-er 6501 df-map 6616 df-en 6707 df-womni 7128 |
This theorem is referenced by: redcwlpo 13934 nconstwlpo 13944 |
Copyright terms: Public domain | W3C validator |