ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  enwomni GIF version

Theorem enwomni 7279
Description: Weak omniscience is invariant with respect to equinumerosity. For example, this means that we can express the Weak Limited Principle of Omniscience as either ω ∈ WOmni or 0 ∈ WOmni. The former is a better match to conventional notation in the sense that df2o3 6523 says that 2o = {∅, 1o} whereas the corresponding relationship does not exist between 2 and {0, 1}. (Contributed by Jim Kingdon, 20-Jun-2024.)
Assertion
Ref Expression
enwomni (𝐴𝐵 → (𝐴 ∈ WOmni ↔ 𝐵 ∈ WOmni))

Proof of Theorem enwomni
StepHypRef Expression
1 enwomnilem 7278 . 2 (𝐴𝐵 → (𝐴 ∈ WOmni → 𝐵 ∈ WOmni))
2 ensym 6880 . . 3 (𝐴𝐵𝐵𝐴)
3 enwomnilem 7278 . . 3 (𝐵𝐴 → (𝐵 ∈ WOmni → 𝐴 ∈ WOmni))
42, 3syl 14 . 2 (𝐴𝐵 → (𝐵 ∈ WOmni → 𝐴 ∈ WOmni))
51, 4impbid 129 1 (𝐴𝐵 → (𝐴 ∈ WOmni ↔ 𝐵 ∈ WOmni))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105  wcel 2177   class class class wbr 4047  cen 6832  WOmnicwomni 7272
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-sep 4166  ax-nul 4174  ax-pow 4222  ax-pr 4257  ax-un 4484  ax-setind 4589
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-ral 2490  df-rex 2491  df-v 2775  df-sbc 3000  df-dif 3169  df-un 3171  df-in 3173  df-ss 3180  df-nul 3462  df-pw 3619  df-sn 3640  df-pr 3641  df-op 3643  df-uni 3853  df-int 3888  df-br 4048  df-opab 4110  df-id 4344  df-suc 4422  df-iom 4643  df-xp 4685  df-rel 4686  df-cnv 4687  df-co 4688  df-dm 4689  df-rn 4690  df-res 4691  df-ima 4692  df-iota 5237  df-fun 5278  df-fn 5279  df-f 5280  df-f1 5281  df-fo 5282  df-f1o 5283  df-fv 5284  df-ov 5954  df-oprab 5955  df-mpo 5956  df-1o 6509  df-2o 6510  df-er 6627  df-map 6744  df-en 6835  df-womni 7273
This theorem is referenced by:  redcwlpo  16068  nconstwlpo  16079
  Copyright terms: Public domain W3C validator