| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > enwomni | GIF version | ||
| Description: Weak omniscience is invariant with respect to equinumerosity. For example, this means that we can express the Weak Limited Principle of Omniscience as either ω ∈ WOmni or ℕ0 ∈ WOmni. The former is a better match to conventional notation in the sense that df2o3 6523 says that 2o = {∅, 1o} whereas the corresponding relationship does not exist between 2 and {0, 1}. (Contributed by Jim Kingdon, 20-Jun-2024.) |
| Ref | Expression |
|---|---|
| enwomni | ⊢ (𝐴 ≈ 𝐵 → (𝐴 ∈ WOmni ↔ 𝐵 ∈ WOmni)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | enwomnilem 7278 | . 2 ⊢ (𝐴 ≈ 𝐵 → (𝐴 ∈ WOmni → 𝐵 ∈ WOmni)) | |
| 2 | ensym 6880 | . . 3 ⊢ (𝐴 ≈ 𝐵 → 𝐵 ≈ 𝐴) | |
| 3 | enwomnilem 7278 | . . 3 ⊢ (𝐵 ≈ 𝐴 → (𝐵 ∈ WOmni → 𝐴 ∈ WOmni)) | |
| 4 | 2, 3 | syl 14 | . 2 ⊢ (𝐴 ≈ 𝐵 → (𝐵 ∈ WOmni → 𝐴 ∈ WOmni)) |
| 5 | 1, 4 | impbid 129 | 1 ⊢ (𝐴 ≈ 𝐵 → (𝐴 ∈ WOmni ↔ 𝐵 ∈ WOmni)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 ∈ wcel 2177 class class class wbr 4047 ≈ cen 6832 WOmnicwomni 7272 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-sep 4166 ax-nul 4174 ax-pow 4222 ax-pr 4257 ax-un 4484 ax-setind 4589 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-ral 2490 df-rex 2491 df-v 2775 df-sbc 3000 df-dif 3169 df-un 3171 df-in 3173 df-ss 3180 df-nul 3462 df-pw 3619 df-sn 3640 df-pr 3641 df-op 3643 df-uni 3853 df-int 3888 df-br 4048 df-opab 4110 df-id 4344 df-suc 4422 df-iom 4643 df-xp 4685 df-rel 4686 df-cnv 4687 df-co 4688 df-dm 4689 df-rn 4690 df-res 4691 df-ima 4692 df-iota 5237 df-fun 5278 df-fn 5279 df-f 5280 df-f1 5281 df-fo 5282 df-f1o 5283 df-fv 5284 df-ov 5954 df-oprab 5955 df-mpo 5956 df-1o 6509 df-2o 6510 df-er 6627 df-map 6744 df-en 6835 df-womni 7273 |
| This theorem is referenced by: redcwlpo 16068 nconstwlpo 16079 |
| Copyright terms: Public domain | W3C validator |