| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > enwomni | GIF version | ||
| Description: Weak omniscience is invariant with respect to equinumerosity. For example, this means that we can express the Weak Limited Principle of Omniscience as either ω ∈ WOmni or ℕ0 ∈ WOmni. The former is a better match to conventional notation in the sense that df2o3 6546 says that 2o = {∅, 1o} whereas the corresponding relationship does not exist between 2 and {0, 1}. (Contributed by Jim Kingdon, 20-Jun-2024.) |
| Ref | Expression |
|---|---|
| enwomni | ⊢ (𝐴 ≈ 𝐵 → (𝐴 ∈ WOmni ↔ 𝐵 ∈ WOmni)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | enwomnilem 7304 | . 2 ⊢ (𝐴 ≈ 𝐵 → (𝐴 ∈ WOmni → 𝐵 ∈ WOmni)) | |
| 2 | ensym 6903 | . . 3 ⊢ (𝐴 ≈ 𝐵 → 𝐵 ≈ 𝐴) | |
| 3 | enwomnilem 7304 | . . 3 ⊢ (𝐵 ≈ 𝐴 → (𝐵 ∈ WOmni → 𝐴 ∈ WOmni)) | |
| 4 | 2, 3 | syl 14 | . 2 ⊢ (𝐴 ≈ 𝐵 → (𝐵 ∈ WOmni → 𝐴 ∈ WOmni)) |
| 5 | 1, 4 | impbid 129 | 1 ⊢ (𝐴 ≈ 𝐵 → (𝐴 ∈ WOmni ↔ 𝐵 ∈ WOmni)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 ∈ wcel 2180 class class class wbr 4062 ≈ cen 6855 WOmnicwomni 7298 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 713 ax-5 1473 ax-7 1474 ax-gen 1475 ax-ie1 1519 ax-ie2 1520 ax-8 1530 ax-10 1531 ax-11 1532 ax-i12 1533 ax-bndl 1535 ax-4 1536 ax-17 1552 ax-i9 1556 ax-ial 1560 ax-i5r 1561 ax-13 2182 ax-14 2183 ax-ext 2191 ax-sep 4181 ax-nul 4189 ax-pow 4237 ax-pr 4272 ax-un 4501 ax-setind 4606 |
| This theorem depends on definitions: df-bi 117 df-dc 839 df-3an 985 df-tru 1378 df-fal 1381 df-nf 1487 df-sb 1789 df-eu 2060 df-mo 2061 df-clab 2196 df-cleq 2202 df-clel 2205 df-nfc 2341 df-ne 2381 df-ral 2493 df-rex 2494 df-v 2781 df-sbc 3009 df-dif 3179 df-un 3181 df-in 3183 df-ss 3190 df-nul 3472 df-pw 3631 df-sn 3652 df-pr 3653 df-op 3655 df-uni 3868 df-int 3903 df-br 4063 df-opab 4125 df-id 4361 df-suc 4439 df-iom 4660 df-xp 4702 df-rel 4703 df-cnv 4704 df-co 4705 df-dm 4706 df-rn 4707 df-res 4708 df-ima 4709 df-iota 5254 df-fun 5296 df-fn 5297 df-f 5298 df-f1 5299 df-fo 5300 df-f1o 5301 df-fv 5302 df-ov 5977 df-oprab 5978 df-mpo 5979 df-1o 6532 df-2o 6533 df-er 6650 df-map 6767 df-en 6858 df-womni 7299 |
| This theorem is referenced by: redcwlpo 16334 nconstwlpo 16345 |
| Copyright terms: Public domain | W3C validator |