ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  enwomni GIF version

Theorem enwomni 7229
Description: Weak omniscience is invariant with respect to equinumerosity. For example, this means that we can express the Weak Limited Principle of Omniscience as either ω ∈ WOmni or 0 ∈ WOmni. The former is a better match to conventional notation in the sense that df2o3 6483 says that 2o = {∅, 1o} whereas the corresponding relationship does not exist between 2 and {0, 1}. (Contributed by Jim Kingdon, 20-Jun-2024.)
Assertion
Ref Expression
enwomni (𝐴𝐵 → (𝐴 ∈ WOmni ↔ 𝐵 ∈ WOmni))

Proof of Theorem enwomni
StepHypRef Expression
1 enwomnilem 7228 . 2 (𝐴𝐵 → (𝐴 ∈ WOmni → 𝐵 ∈ WOmni))
2 ensym 6835 . . 3 (𝐴𝐵𝐵𝐴)
3 enwomnilem 7228 . . 3 (𝐵𝐴 → (𝐵 ∈ WOmni → 𝐴 ∈ WOmni))
42, 3syl 14 . 2 (𝐴𝐵 → (𝐵 ∈ WOmni → 𝐴 ∈ WOmni))
51, 4impbid 129 1 (𝐴𝐵 → (𝐴 ∈ WOmni ↔ 𝐵 ∈ WOmni))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105  wcel 2164   class class class wbr 4029  cen 6792  WOmnicwomni 7222
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-nul 4155  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-ral 2477  df-rex 2478  df-v 2762  df-sbc 2986  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-br 4030  df-opab 4091  df-id 4324  df-suc 4402  df-iom 4623  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-fv 5262  df-ov 5921  df-oprab 5922  df-mpo 5923  df-1o 6469  df-2o 6470  df-er 6587  df-map 6704  df-en 6795  df-womni 7223
This theorem is referenced by:  redcwlpo  15545  nconstwlpo  15556
  Copyright terms: Public domain W3C validator