ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  enwomni GIF version

Theorem enwomni 7146
Description: Weak omniscience is invariant with respect to equinumerosity. For example, this means that we can express the Weak Limited Principle of Omniscience as either ω ∈ WOmni or 0 ∈ WOmni. The former is a better match to conventional notation in the sense that df2o3 6409 says that 2o = {∅, 1o} whereas the corresponding relationship does not exist between 2 and {0, 1}. (Contributed by Jim Kingdon, 20-Jun-2024.)
Assertion
Ref Expression
enwomni (𝐴𝐵 → (𝐴 ∈ WOmni ↔ 𝐵 ∈ WOmni))

Proof of Theorem enwomni
StepHypRef Expression
1 enwomnilem 7145 . 2 (𝐴𝐵 → (𝐴 ∈ WOmni → 𝐵 ∈ WOmni))
2 ensym 6759 . . 3 (𝐴𝐵𝐵𝐴)
3 enwomnilem 7145 . . 3 (𝐵𝐴 → (𝐵 ∈ WOmni → 𝐴 ∈ WOmni))
42, 3syl 14 . 2 (𝐴𝐵 → (𝐵 ∈ WOmni → 𝐴 ∈ WOmni))
51, 4impbid 128 1 (𝐴𝐵 → (𝐴 ∈ WOmni ↔ 𝐵 ∈ WOmni))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 104  wcel 2141   class class class wbr 3989  cen 6716  WOmnicwomni 7139
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-nul 4115  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521
This theorem depends on definitions:  df-bi 116  df-dc 830  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-ral 2453  df-rex 2454  df-v 2732  df-sbc 2956  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-int 3832  df-br 3990  df-opab 4051  df-id 4278  df-suc 4356  df-iom 4575  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-f1 5203  df-fo 5204  df-f1o 5205  df-fv 5206  df-ov 5856  df-oprab 5857  df-mpo 5858  df-1o 6395  df-2o 6396  df-er 6513  df-map 6628  df-en 6719  df-womni 7140
This theorem is referenced by:  redcwlpo  14087  nconstwlpo  14097
  Copyright terms: Public domain W3C validator