ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fexd Unicode version

Theorem fexd 5792
Description: If the domain of a mapping is a set, the function is a set. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
Hypotheses
Ref Expression
fexd.1  |-  ( ph  ->  F : A --> B )
fexd.2  |-  ( ph  ->  A  e.  C )
Assertion
Ref Expression
fexd  |-  ( ph  ->  F  e.  _V )

Proof of Theorem fexd
StepHypRef Expression
1 fexd.1 . 2  |-  ( ph  ->  F : A --> B )
2 fexd.2 . 2  |-  ( ph  ->  A  e.  C )
3 fex 5791 . 2  |-  ( ( F : A --> B  /\  A  e.  C )  ->  F  e.  _V )
41, 2, 3syl2anc 411 1  |-  ( ph  ->  F  e.  _V )
Colors of variables: wff set class
Syntax hints:    -> wi 4    e. wcel 2167   _Vcvv 2763   -->wf 5254
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-14 2170  ax-ext 2178  ax-coll 4148  ax-sep 4151  ax-pow 4207  ax-pr 4242
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-un 3161  df-in 3163  df-ss 3170  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-id 4328  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266
This theorem is referenced by:  seqf1oglem2a  10595  seqf1oglem2  10597  seqf1og  10598  iswrd  10922  imasival  12925  imasbas  12926  imasplusg  12927  imasmulr  12928  imasaddfnlemg  12933  imasaddvallemg  12934  igsumval  13009  gsumsplit1r  13017  gsumprval  13018  gsumfzcl  13107  isghm  13349  gsumfzreidx  13443  gsumfzsubmcl  13444  gsumfzmptfidmadd  13445  gsumfzmhm  13449
  Copyright terms: Public domain W3C validator