| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fexd | Unicode version | ||
| Description: If the domain of a mapping is a set, the function is a set. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
| Ref | Expression |
|---|---|
| fexd.1 |
|
| fexd.2 |
|
| Ref | Expression |
|---|---|
| fexd |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fexd.1 |
. 2
| |
| 2 | fexd.2 |
. 2
| |
| 3 | fex 5836 |
. 2
| |
| 4 | 1, 2, 3 | syl2anc 411 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-14 2181 ax-ext 2189 ax-coll 4175 ax-sep 4178 ax-pow 4234 ax-pr 4269 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ral 2491 df-rex 2492 df-reu 2493 df-rab 2495 df-v 2778 df-sbc 3006 df-csb 3102 df-un 3178 df-in 3180 df-ss 3187 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-iun 3943 df-br 4060 df-opab 4122 df-mpt 4123 df-id 4358 df-xp 4699 df-rel 4700 df-cnv 4701 df-co 4702 df-dm 4703 df-rn 4704 df-res 4705 df-ima 4706 df-iota 5251 df-fun 5292 df-fn 5293 df-f 5294 df-f1 5295 df-fo 5296 df-f1o 5297 df-fv 5298 |
| This theorem is referenced by: seqf1oglem2a 10700 seqf1oglem2 10702 seqf1og 10703 iswrd 11033 imasival 13253 imasbas 13254 imasplusg 13255 imasmulr 13256 imasaddfnlemg 13261 imasaddvallemg 13262 igsumval 13337 gsumsplit1r 13345 gsumprval 13346 prdssgrpd 13362 gsumfzcl 13446 isghm 13694 gsumfzreidx 13788 gsumfzsubmcl 13789 gsumfzmptfidmadd 13790 gsumfzmhm 13794 |
| Copyright terms: Public domain | W3C validator |