| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fexd | Unicode version | ||
| Description: If the domain of a mapping is a set, the function is a set. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
| Ref | Expression |
|---|---|
| fexd.1 |
|
| fexd.2 |
|
| Ref | Expression |
|---|---|
| fexd |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fexd.1 |
. 2
| |
| 2 | fexd.2 |
. 2
| |
| 3 | fex 5792 |
. 2
| |
| 4 | 1, 2, 3 | syl2anc 411 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-14 2170 ax-ext 2178 ax-coll 4149 ax-sep 4152 ax-pow 4208 ax-pr 4243 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-reu 2482 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-un 3161 df-in 3163 df-ss 3170 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-iun 3919 df-br 4035 df-opab 4096 df-mpt 4097 df-id 4329 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-rn 4675 df-res 4676 df-ima 4677 df-iota 5220 df-fun 5261 df-fn 5262 df-f 5263 df-f1 5264 df-fo 5265 df-f1o 5266 df-fv 5267 |
| This theorem is referenced by: seqf1oglem2a 10612 seqf1oglem2 10614 seqf1og 10615 iswrd 10939 imasival 12959 imasbas 12960 imasplusg 12961 imasmulr 12962 imasaddfnlemg 12967 imasaddvallemg 12968 igsumval 13043 gsumsplit1r 13051 gsumprval 13052 gsumfzcl 13141 isghm 13383 gsumfzreidx 13477 gsumfzsubmcl 13478 gsumfzmptfidmadd 13479 gsumfzmhm 13483 |
| Copyright terms: Public domain | W3C validator |