ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lmodscaf Unicode version

Theorem lmodscaf 14043
Description: The scalar multiplication operation is a function. (Contributed by Mario Carneiro, 5-Oct-2015.)
Hypotheses
Ref Expression
scaffval.b  |-  B  =  ( Base `  W
)
scaffval.f  |-  F  =  (Scalar `  W )
scaffval.k  |-  K  =  ( Base `  F
)
scaffval.a  |-  .xb  =  ( .sf `  W
)
Assertion
Ref Expression
lmodscaf  |-  ( W  e.  LMod  ->  .xb  : ( K  X.  B ) --> B )

Proof of Theorem lmodscaf
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 scaffval.b . . . . . 6  |-  B  =  ( Base `  W
)
2 scaffval.f . . . . . 6  |-  F  =  (Scalar `  W )
3 eqid 2204 . . . . . 6  |-  ( .s
`  W )  =  ( .s `  W
)
4 scaffval.k . . . . . 6  |-  K  =  ( Base `  F
)
51, 2, 3, 4lmodvscl 14038 . . . . 5  |-  ( ( W  e.  LMod  /\  x  e.  K  /\  y  e.  B )  ->  (
x ( .s `  W ) y )  e.  B )
653expb 1206 . . . 4  |-  ( ( W  e.  LMod  /\  (
x  e.  K  /\  y  e.  B )
)  ->  ( x
( .s `  W
) y )  e.  B )
76ralrimivva 2587 . . 3  |-  ( W  e.  LMod  ->  A. x  e.  K  A. y  e.  B  ( x
( .s `  W
) y )  e.  B )
8 eqid 2204 . . . 4  |-  ( x  e.  K ,  y  e.  B  |->  ( x ( .s `  W
) y ) )  =  ( x  e.  K ,  y  e.  B  |->  ( x ( .s `  W ) y ) )
98fmpo 6286 . . 3  |-  ( A. x  e.  K  A. y  e.  B  (
x ( .s `  W ) y )  e.  B  <->  ( x  e.  K ,  y  e.  B  |->  ( x ( .s `  W ) y ) ) : ( K  X.  B
) --> B )
107, 9sylib 122 . 2  |-  ( W  e.  LMod  ->  ( x  e.  K ,  y  e.  B  |->  ( x ( .s `  W
) y ) ) : ( K  X.  B ) --> B )
11 scaffval.a . . . 4  |-  .xb  =  ( .sf `  W
)
121, 2, 4, 11, 3scaffvalg 14039 . . 3  |-  ( W  e.  LMod  ->  .xb  =  ( x  e.  K ,  y  e.  B  |->  ( x ( .s
`  W ) y ) ) )
1312feq1d 5411 . 2  |-  ( W  e.  LMod  ->  (  .xb  : ( K  X.  B
) --> B  <->  ( x  e.  K ,  y  e.  B  |->  ( x ( .s `  W ) y ) ) : ( K  X.  B
) --> B ) )
1410, 13mpbird 167 1  |-  ( W  e.  LMod  ->  .xb  : ( K  X.  B ) --> B )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1372    e. wcel 2175   A.wral 2483    X. cxp 4672   -->wf 5266   ` cfv 5270  (class class class)co 5943    e. cmpo 5945   Basecbs 12803  Scalarcsca 12883   .scvsca 12884   LModclmod 14020   .sfcscaf 14021
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-13 2177  ax-14 2178  ax-ext 2186  ax-coll 4158  ax-sep 4161  ax-pow 4217  ax-pr 4252  ax-un 4479  ax-cnex 8015  ax-resscn 8016  ax-1re 8018  ax-addrcl 8021
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1375  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ral 2488  df-rex 2489  df-reu 2490  df-rab 2492  df-v 2773  df-sbc 2998  df-csb 3093  df-un 3169  df-in 3171  df-ss 3178  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-int 3885  df-iun 3928  df-br 4044  df-opab 4105  df-mpt 4106  df-id 4339  df-xp 4680  df-rel 4681  df-cnv 4682  df-co 4683  df-dm 4684  df-rn 4685  df-res 4686  df-ima 4687  df-iota 5231  df-fun 5272  df-fn 5273  df-f 5274  df-f1 5275  df-fo 5276  df-f1o 5277  df-fv 5278  df-ov 5946  df-oprab 5947  df-mpo 5948  df-1st 6225  df-2nd 6226  df-inn 9036  df-2 9094  df-3 9095  df-4 9096  df-5 9097  df-6 9098  df-ndx 12806  df-slot 12807  df-base 12809  df-plusg 12893  df-mulr 12894  df-sca 12896  df-vsca 12897  df-lmod 14022  df-scaf 14023
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator