ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lmodscaf Unicode version

Theorem lmodscaf 13400
Description: The scalar multiplication operation is a function. (Contributed by Mario Carneiro, 5-Oct-2015.)
Hypotheses
Ref Expression
scaffval.b  |-  B  =  ( Base `  W
)
scaffval.f  |-  F  =  (Scalar `  W )
scaffval.k  |-  K  =  ( Base `  F
)
scaffval.a  |-  .xb  =  ( .sf `  W
)
Assertion
Ref Expression
lmodscaf  |-  ( W  e.  LMod  ->  .xb  : ( K  X.  B ) --> B )

Proof of Theorem lmodscaf
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 scaffval.b . . . . . 6  |-  B  =  ( Base `  W
)
2 scaffval.f . . . . . 6  |-  F  =  (Scalar `  W )
3 eqid 2177 . . . . . 6  |-  ( .s
`  W )  =  ( .s `  W
)
4 scaffval.k . . . . . 6  |-  K  =  ( Base `  F
)
51, 2, 3, 4lmodvscl 13395 . . . . 5  |-  ( ( W  e.  LMod  /\  x  e.  K  /\  y  e.  B )  ->  (
x ( .s `  W ) y )  e.  B )
653expb 1204 . . . 4  |-  ( ( W  e.  LMod  /\  (
x  e.  K  /\  y  e.  B )
)  ->  ( x
( .s `  W
) y )  e.  B )
76ralrimivva 2559 . . 3  |-  ( W  e.  LMod  ->  A. x  e.  K  A. y  e.  B  ( x
( .s `  W
) y )  e.  B )
8 eqid 2177 . . . 4  |-  ( x  e.  K ,  y  e.  B  |->  ( x ( .s `  W
) y ) )  =  ( x  e.  K ,  y  e.  B  |->  ( x ( .s `  W ) y ) )
98fmpo 6202 . . 3  |-  ( A. x  e.  K  A. y  e.  B  (
x ( .s `  W ) y )  e.  B  <->  ( x  e.  K ,  y  e.  B  |->  ( x ( .s `  W ) y ) ) : ( K  X.  B
) --> B )
107, 9sylib 122 . 2  |-  ( W  e.  LMod  ->  ( x  e.  K ,  y  e.  B  |->  ( x ( .s `  W
) y ) ) : ( K  X.  B ) --> B )
11 scaffval.a . . . 4  |-  .xb  =  ( .sf `  W
)
121, 2, 4, 11, 3scaffvalg 13396 . . 3  |-  ( W  e.  LMod  ->  .xb  =  ( x  e.  K ,  y  e.  B  |->  ( x ( .s
`  W ) y ) ) )
1312feq1d 5353 . 2  |-  ( W  e.  LMod  ->  (  .xb  : ( K  X.  B
) --> B  <->  ( x  e.  K ,  y  e.  B  |->  ( x ( .s `  W ) y ) ) : ( K  X.  B
) --> B ) )
1410, 13mpbird 167 1  |-  ( W  e.  LMod  ->  .xb  : ( K  X.  B ) --> B )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1353    e. wcel 2148   A.wral 2455    X. cxp 4625   -->wf 5213   ` cfv 5217  (class class class)co 5875    e. cmpo 5877   Basecbs 12462  Scalarcsca 12539   .scvsca 12540   LModclmod 13377   .sfcscaf 13378
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4119  ax-sep 4122  ax-pow 4175  ax-pr 4210  ax-un 4434  ax-cnex 7902  ax-resscn 7903  ax-1re 7905  ax-addrcl 7908
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-reu 2462  df-rab 2464  df-v 2740  df-sbc 2964  df-csb 3059  df-un 3134  df-in 3136  df-ss 3143  df-pw 3578  df-sn 3599  df-pr 3600  df-op 3602  df-uni 3811  df-int 3846  df-iun 3889  df-br 4005  df-opab 4066  df-mpt 4067  df-id 4294  df-xp 4633  df-rel 4634  df-cnv 4635  df-co 4636  df-dm 4637  df-rn 4638  df-res 4639  df-ima 4640  df-iota 5179  df-fun 5219  df-fn 5220  df-f 5221  df-f1 5222  df-fo 5223  df-f1o 5224  df-fv 5225  df-ov 5878  df-oprab 5879  df-mpo 5880  df-1st 6141  df-2nd 6142  df-inn 8920  df-2 8978  df-3 8979  df-4 8980  df-5 8981  df-6 8982  df-ndx 12465  df-slot 12466  df-base 12468  df-plusg 12549  df-mulr 12550  df-sca 12552  df-vsca 12553  df-lmod 13379  df-scaf 13380
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator