| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ficardon | GIF version | ||
| Description: The cardinal number of a finite set is an ordinal. (Contributed by Jim Kingdon, 1-Nov-2025.) |
| Ref | Expression |
|---|---|
| ficardon | ⊢ (𝐴 ∈ Fin → (card‘𝐴) ∈ On) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isfi 6882 | . . . 4 ⊢ (𝐴 ∈ Fin ↔ ∃𝑥 ∈ ω 𝐴 ≈ 𝑥) | |
| 2 | omsson 4682 | . . . . 5 ⊢ ω ⊆ On | |
| 3 | ssrexv 3269 | . . . . 5 ⊢ (ω ⊆ On → (∃𝑥 ∈ ω 𝐴 ≈ 𝑥 → ∃𝑥 ∈ On 𝐴 ≈ 𝑥)) | |
| 4 | 2, 3 | ax-mp 5 | . . . 4 ⊢ (∃𝑥 ∈ ω 𝐴 ≈ 𝑥 → ∃𝑥 ∈ On 𝐴 ≈ 𝑥) |
| 5 | 1, 4 | sylbi 121 | . . 3 ⊢ (𝐴 ∈ Fin → ∃𝑥 ∈ On 𝐴 ≈ 𝑥) |
| 6 | ensymb 6902 | . . . 4 ⊢ (𝐴 ≈ 𝑥 ↔ 𝑥 ≈ 𝐴) | |
| 7 | 6 | rexbii 2517 | . . 3 ⊢ (∃𝑥 ∈ On 𝐴 ≈ 𝑥 ↔ ∃𝑥 ∈ On 𝑥 ≈ 𝐴) |
| 8 | 5, 7 | sylib 122 | . 2 ⊢ (𝐴 ∈ Fin → ∃𝑥 ∈ On 𝑥 ≈ 𝐴) |
| 9 | cardcl 7321 | . 2 ⊢ (∃𝑥 ∈ On 𝑥 ≈ 𝐴 → (card‘𝐴) ∈ On) | |
| 10 | 8, 9 | syl 14 | 1 ⊢ (𝐴 ∈ Fin → (card‘𝐴) ∈ On) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∈ wcel 2180 ∃wrex 2489 ⊆ wss 3177 class class class wbr 4062 Oncon0 4431 ωcom 4659 ‘cfv 5294 ≈ cen 6855 Fincfn 6857 cardccrd 7317 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 713 ax-5 1473 ax-7 1474 ax-gen 1475 ax-ie1 1519 ax-ie2 1520 ax-8 1530 ax-10 1531 ax-11 1532 ax-i12 1533 ax-bndl 1535 ax-4 1536 ax-17 1552 ax-i9 1556 ax-ial 1560 ax-i5r 1561 ax-13 2182 ax-14 2183 ax-ext 2191 ax-sep 4181 ax-nul 4189 ax-pow 4237 ax-pr 4272 ax-un 4501 ax-iinf 4657 |
| This theorem depends on definitions: df-bi 117 df-3an 985 df-tru 1378 df-nf 1487 df-sb 1789 df-eu 2060 df-mo 2061 df-clab 2196 df-cleq 2202 df-clel 2205 df-nfc 2341 df-ral 2493 df-rex 2494 df-rab 2497 df-v 2781 df-sbc 3009 df-csb 3105 df-dif 3179 df-un 3181 df-in 3183 df-ss 3190 df-nul 3472 df-pw 3631 df-sn 3652 df-pr 3653 df-op 3655 df-uni 3868 df-int 3903 df-br 4063 df-opab 4125 df-mpt 4126 df-tr 4162 df-id 4361 df-iord 4434 df-on 4436 df-suc 4439 df-iom 4660 df-xp 4702 df-rel 4703 df-cnv 4704 df-co 4705 df-dm 4706 df-rn 4707 df-res 4708 df-ima 4709 df-iota 5254 df-fun 5296 df-fn 5297 df-f 5298 df-f1 5299 df-fo 5300 df-f1o 5301 df-fv 5302 df-er 6650 df-en 6858 df-fin 6860 df-card 7319 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |