| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ficardon | GIF version | ||
| Description: The cardinal number of a finite set is an ordinal. (Contributed by Jim Kingdon, 1-Nov-2025.) |
| Ref | Expression |
|---|---|
| ficardon | ⊢ (𝐴 ∈ Fin → (card‘𝐴) ∈ On) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isfi 6920 | . . . 4 ⊢ (𝐴 ∈ Fin ↔ ∃𝑥 ∈ ω 𝐴 ≈ 𝑥) | |
| 2 | omsson 4705 | . . . . 5 ⊢ ω ⊆ On | |
| 3 | ssrexv 3289 | . . . . 5 ⊢ (ω ⊆ On → (∃𝑥 ∈ ω 𝐴 ≈ 𝑥 → ∃𝑥 ∈ On 𝐴 ≈ 𝑥)) | |
| 4 | 2, 3 | ax-mp 5 | . . . 4 ⊢ (∃𝑥 ∈ ω 𝐴 ≈ 𝑥 → ∃𝑥 ∈ On 𝐴 ≈ 𝑥) |
| 5 | 1, 4 | sylbi 121 | . . 3 ⊢ (𝐴 ∈ Fin → ∃𝑥 ∈ On 𝐴 ≈ 𝑥) |
| 6 | ensymb 6940 | . . . 4 ⊢ (𝐴 ≈ 𝑥 ↔ 𝑥 ≈ 𝐴) | |
| 7 | 6 | rexbii 2537 | . . 3 ⊢ (∃𝑥 ∈ On 𝐴 ≈ 𝑥 ↔ ∃𝑥 ∈ On 𝑥 ≈ 𝐴) |
| 8 | 5, 7 | sylib 122 | . 2 ⊢ (𝐴 ∈ Fin → ∃𝑥 ∈ On 𝑥 ≈ 𝐴) |
| 9 | cardcl 7361 | . 2 ⊢ (∃𝑥 ∈ On 𝑥 ≈ 𝐴 → (card‘𝐴) ∈ On) | |
| 10 | 8, 9 | syl 14 | 1 ⊢ (𝐴 ∈ Fin → (card‘𝐴) ∈ On) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∈ wcel 2200 ∃wrex 2509 ⊆ wss 3197 class class class wbr 4083 Oncon0 4454 ωcom 4682 ‘cfv 5318 ≈ cen 6893 Fincfn 6895 cardccrd 7357 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-nul 4210 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-iinf 4680 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-int 3924 df-br 4084 df-opab 4146 df-mpt 4147 df-tr 4183 df-id 4384 df-iord 4457 df-on 4459 df-suc 4462 df-iom 4683 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-res 4731 df-ima 4732 df-iota 5278 df-fun 5320 df-fn 5321 df-f 5322 df-f1 5323 df-fo 5324 df-f1o 5325 df-fv 5326 df-er 6688 df-en 6896 df-fin 6898 df-card 7359 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |