ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fisbth GIF version

Theorem fisbth 7041
Description: Schroeder-Bernstein Theorem for finite sets. (Contributed by Jim Kingdon, 12-Sep-2021.)
Assertion
Ref Expression
fisbth (((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ (𝐴𝐵𝐵𝐴)) → 𝐴𝐵)

Proof of Theorem fisbth
Dummy variables 𝑚 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 isfi 6910 . . . 4 (𝐴 ∈ Fin ↔ ∃𝑛 ∈ ω 𝐴𝑛)
21biimpi 120 . . 3 (𝐴 ∈ Fin → ∃𝑛 ∈ ω 𝐴𝑛)
32ad2antrr 488 . 2 (((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ (𝐴𝐵𝐵𝐴)) → ∃𝑛 ∈ ω 𝐴𝑛)
4 isfi 6910 . . . . 5 (𝐵 ∈ Fin ↔ ∃𝑚 ∈ ω 𝐵𝑚)
54biimpi 120 . . . 4 (𝐵 ∈ Fin → ∃𝑚 ∈ ω 𝐵𝑚)
65ad3antlr 493 . . 3 ((((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ (𝐴𝐵𝐵𝐴)) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) → ∃𝑚 ∈ ω 𝐵𝑚)
7 simplrr 536 . . . . 5 (((((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ (𝐴𝐵𝐵𝐴)) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ (𝑚 ∈ ω ∧ 𝐵𝑚)) → 𝐴𝑛)
87ensymd 6933 . . . . . . . . 9 (((((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ (𝐴𝐵𝐵𝐴)) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ (𝑚 ∈ ω ∧ 𝐵𝑚)) → 𝑛𝐴)
9 simprl 529 . . . . . . . . . 10 (((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ (𝐴𝐵𝐵𝐴)) → 𝐴𝐵)
109ad2antrr 488 . . . . . . . . 9 (((((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ (𝐴𝐵𝐵𝐴)) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ (𝑚 ∈ ω ∧ 𝐵𝑚)) → 𝐴𝐵)
11 endomtr 6940 . . . . . . . . 9 ((𝑛𝐴𝐴𝐵) → 𝑛𝐵)
128, 10, 11syl2anc 411 . . . . . . . 8 (((((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ (𝐴𝐵𝐵𝐴)) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ (𝑚 ∈ ω ∧ 𝐵𝑚)) → 𝑛𝐵)
13 simprr 531 . . . . . . . 8 (((((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ (𝐴𝐵𝐵𝐴)) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ (𝑚 ∈ ω ∧ 𝐵𝑚)) → 𝐵𝑚)
14 domentr 6941 . . . . . . . 8 ((𝑛𝐵𝐵𝑚) → 𝑛𝑚)
1512, 13, 14syl2anc 411 . . . . . . 7 (((((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ (𝐴𝐵𝐵𝐴)) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ (𝑚 ∈ ω ∧ 𝐵𝑚)) → 𝑛𝑚)
16 simplrl 535 . . . . . . . 8 (((((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ (𝐴𝐵𝐵𝐴)) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ (𝑚 ∈ ω ∧ 𝐵𝑚)) → 𝑛 ∈ ω)
17 simprl 529 . . . . . . . 8 (((((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ (𝐴𝐵𝐵𝐴)) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ (𝑚 ∈ ω ∧ 𝐵𝑚)) → 𝑚 ∈ ω)
18 nndomo 7021 . . . . . . . 8 ((𝑛 ∈ ω ∧ 𝑚 ∈ ω) → (𝑛𝑚𝑛𝑚))
1916, 17, 18syl2anc 411 . . . . . . 7 (((((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ (𝐴𝐵𝐵𝐴)) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ (𝑚 ∈ ω ∧ 𝐵𝑚)) → (𝑛𝑚𝑛𝑚))
2015, 19mpbid 147 . . . . . 6 (((((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ (𝐴𝐵𝐵𝐴)) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ (𝑚 ∈ ω ∧ 𝐵𝑚)) → 𝑛𝑚)
2113ensymd 6933 . . . . . . . . 9 (((((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ (𝐴𝐵𝐵𝐴)) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ (𝑚 ∈ ω ∧ 𝐵𝑚)) → 𝑚𝐵)
22 simprr 531 . . . . . . . . . 10 (((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ (𝐴𝐵𝐵𝐴)) → 𝐵𝐴)
2322ad2antrr 488 . . . . . . . . 9 (((((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ (𝐴𝐵𝐵𝐴)) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ (𝑚 ∈ ω ∧ 𝐵𝑚)) → 𝐵𝐴)
24 endomtr 6940 . . . . . . . . 9 ((𝑚𝐵𝐵𝐴) → 𝑚𝐴)
2521, 23, 24syl2anc 411 . . . . . . . 8 (((((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ (𝐴𝐵𝐵𝐴)) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ (𝑚 ∈ ω ∧ 𝐵𝑚)) → 𝑚𝐴)
26 domentr 6941 . . . . . . . 8 ((𝑚𝐴𝐴𝑛) → 𝑚𝑛)
2725, 7, 26syl2anc 411 . . . . . . 7 (((((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ (𝐴𝐵𝐵𝐴)) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ (𝑚 ∈ ω ∧ 𝐵𝑚)) → 𝑚𝑛)
28 nndomo 7021 . . . . . . . 8 ((𝑚 ∈ ω ∧ 𝑛 ∈ ω) → (𝑚𝑛𝑚𝑛))
2917, 16, 28syl2anc 411 . . . . . . 7 (((((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ (𝐴𝐵𝐵𝐴)) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ (𝑚 ∈ ω ∧ 𝐵𝑚)) → (𝑚𝑛𝑚𝑛))
3027, 29mpbid 147 . . . . . 6 (((((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ (𝐴𝐵𝐵𝐴)) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ (𝑚 ∈ ω ∧ 𝐵𝑚)) → 𝑚𝑛)
3120, 30eqssd 3241 . . . . 5 (((((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ (𝐴𝐵𝐵𝐴)) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ (𝑚 ∈ ω ∧ 𝐵𝑚)) → 𝑛 = 𝑚)
327, 31breqtrd 4108 . . . 4 (((((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ (𝐴𝐵𝐵𝐴)) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ (𝑚 ∈ ω ∧ 𝐵𝑚)) → 𝐴𝑚)
33 entr 6934 . . . 4 ((𝐴𝑚𝑚𝐵) → 𝐴𝐵)
3432, 21, 33syl2anc 411 . . 3 (((((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ (𝐴𝐵𝐵𝐴)) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ (𝑚 ∈ ω ∧ 𝐵𝑚)) → 𝐴𝐵)
356, 34rexlimddv 2653 . 2 ((((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ (𝐴𝐵𝐵𝐴)) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) → 𝐴𝐵)
363, 35rexlimddv 2653 1 (((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ (𝐴𝐵𝐵𝐴)) → 𝐴𝐵)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  wcel 2200  wrex 2509  wss 3197   class class class wbr 4082  ωcom 4681  cen 6883  cdom 6884  Fincfn 6885
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-nul 4209  ax-pow 4257  ax-pr 4292  ax-un 4523  ax-setind 4628  ax-iinf 4679
This theorem depends on definitions:  df-bi 117  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-ral 2513  df-rex 2514  df-rab 2517  df-v 2801  df-sbc 3029  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-br 4083  df-opab 4145  df-tr 4182  df-id 4383  df-iord 4456  df-on 4458  df-suc 4461  df-iom 4682  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-res 4730  df-ima 4731  df-iota 5277  df-fun 5319  df-fn 5320  df-f 5321  df-f1 5322  df-fo 5323  df-f1o 5324  df-fv 5325  df-er 6678  df-en 6886  df-dom 6887  df-fin 6888
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator