ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  invrfvald Unicode version

Theorem invrfvald 13999
Description: Multiplicative inverse function for a ring. (Contributed by NM, 21-Sep-2011.) (Revised by Mario Carneiro, 25-Dec-2014.)
Hypotheses
Ref Expression
invrfvald.u  |-  ( ph  ->  U  =  (Unit `  R ) )
invrfvald.g  |-  ( ph  ->  G  =  ( (mulGrp `  R )s  U ) )
invrfvald.i  |-  ( ph  ->  I  =  ( invr `  R ) )
invrfvald.r  |-  ( ph  ->  R  e.  Ring )
Assertion
Ref Expression
invrfvald  |-  ( ph  ->  I  =  ( invg `  G ) )

Proof of Theorem invrfvald
Dummy variable  r is distinct from all other variables.
StepHypRef Expression
1 invrfvald.u . . . 4  |-  ( ph  ->  U  =  (Unit `  R ) )
21oveq2d 5983 . . 3  |-  ( ph  ->  ( (mulGrp `  R
)s 
U )  =  ( (mulGrp `  R )s  (Unit `  R ) ) )
32fveq2d 5603 . 2  |-  ( ph  ->  ( invg `  ( (mulGrp `  R )s  U
) )  =  ( invg `  (
(mulGrp `  R )s  (Unit `  R ) ) ) )
4 invrfvald.g . . 3  |-  ( ph  ->  G  =  ( (mulGrp `  R )s  U ) )
54fveq2d 5603 . 2  |-  ( ph  ->  ( invg `  G )  =  ( invg `  (
(mulGrp `  R )s  U
) ) )
6 invrfvald.i . . 3  |-  ( ph  ->  I  =  ( invr `  R ) )
7 df-invr 13998 . . . 4  |-  invr  =  ( r  e.  _V  |->  ( invg `  (
(mulGrp `  r )s  (Unit `  r ) ) ) )
8 fveq2 5599 . . . . . 6  |-  ( r  =  R  ->  (mulGrp `  r )  =  (mulGrp `  R ) )
9 fveq2 5599 . . . . . 6  |-  ( r  =  R  ->  (Unit `  r )  =  (Unit `  R ) )
108, 9oveq12d 5985 . . . . 5  |-  ( r  =  R  ->  (
(mulGrp `  r )s  (Unit `  r ) )  =  ( (mulGrp `  R
)s  (Unit `  R )
) )
1110fveq2d 5603 . . . 4  |-  ( r  =  R  ->  ( invg `  ( (mulGrp `  r )s  (Unit `  r )
) )  =  ( invg `  (
(mulGrp `  R )s  (Unit `  R ) ) ) )
12 invrfvald.r . . . . 5  |-  ( ph  ->  R  e.  Ring )
1312elexd 2790 . . . 4  |-  ( ph  ->  R  e.  _V )
14 eqid 2207 . . . . . . . 8  |-  (Unit `  R )  =  (Unit `  R )
15 eqid 2207 . . . . . . . 8  |-  ( (mulGrp `  R )s  (Unit `  R )
)  =  ( (mulGrp `  R )s  (Unit `  R )
)
1614, 15unitgrp 13993 . . . . . . 7  |-  ( R  e.  Ring  ->  ( (mulGrp `  R )s  (Unit `  R )
)  e.  Grp )
1712, 16syl 14 . . . . . 6  |-  ( ph  ->  ( (mulGrp `  R
)s  (Unit `  R )
)  e.  Grp )
18 eqid 2207 . . . . . . 7  |-  ( Base `  ( (mulGrp `  R
)s  (Unit `  R )
) )  =  (
Base `  ( (mulGrp `  R )s  (Unit `  R )
) )
19 eqid 2207 . . . . . . 7  |-  ( invg `  ( (mulGrp `  R )s  (Unit `  R )
) )  =  ( invg `  (
(mulGrp `  R )s  (Unit `  R ) ) )
2018, 19grpinvfng 13491 . . . . . 6  |-  ( ( (mulGrp `  R )s  (Unit `  R ) )  e. 
Grp  ->  ( invg `  ( (mulGrp `  R
)s  (Unit `  R )
) )  Fn  ( Base `  ( (mulGrp `  R )s  (Unit `  R )
) ) )
2117, 20syl 14 . . . . 5  |-  ( ph  ->  ( invg `  ( (mulGrp `  R )s  (Unit `  R ) ) )  Fn  ( Base `  (
(mulGrp `  R )s  (Unit `  R ) ) ) )
22 basfn 13005 . . . . . 6  |-  Base  Fn  _V
2317elexd 2790 . . . . . 6  |-  ( ph  ->  ( (mulGrp `  R
)s  (Unit `  R )
)  e.  _V )
24 funfvex 5616 . . . . . . 7  |-  ( ( Fun  Base  /\  (
(mulGrp `  R )s  (Unit `  R ) )  e. 
dom  Base )  ->  ( Base `  ( (mulGrp `  R )s  (Unit `  R )
) )  e.  _V )
2524funfni 5395 . . . . . 6  |-  ( (
Base  Fn  _V  /\  (
(mulGrp `  R )s  (Unit `  R ) )  e. 
_V )  ->  ( Base `  ( (mulGrp `  R )s  (Unit `  R )
) )  e.  _V )
2622, 23, 25sylancr 414 . . . . 5  |-  ( ph  ->  ( Base `  (
(mulGrp `  R )s  (Unit `  R ) ) )  e.  _V )
27 fnex 5829 . . . . 5  |-  ( ( ( invg `  ( (mulGrp `  R )s  (Unit `  R ) ) )  Fn  ( Base `  (
(mulGrp `  R )s  (Unit `  R ) ) )  /\  ( Base `  (
(mulGrp `  R )s  (Unit `  R ) ) )  e.  _V )  -> 
( invg `  ( (mulGrp `  R )s  (Unit `  R ) ) )  e.  _V )
2821, 26, 27syl2anc 411 . . . 4  |-  ( ph  ->  ( invg `  ( (mulGrp `  R )s  (Unit `  R ) ) )  e.  _V )
297, 11, 13, 28fvmptd3 5696 . . 3  |-  ( ph  ->  ( invr `  R
)  =  ( invg `  ( (mulGrp `  R )s  (Unit `  R )
) ) )
306, 29eqtrd 2240 . 2  |-  ( ph  ->  I  =  ( invg `  ( (mulGrp `  R )s  (Unit `  R )
) ) )
313, 5, 303eqtr4rd 2251 1  |-  ( ph  ->  I  =  ( invg `  G ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1373    e. wcel 2178   _Vcvv 2776    Fn wfn 5285   ` cfv 5290  (class class class)co 5967   Basecbs 12947   ↾s cress 12948   Grpcgrp 13447   invgcminusg 13448  mulGrpcmgp 13797   Ringcrg 13873  Unitcui 13964   invrcinvr 13997
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-coll 4175  ax-sep 4178  ax-nul 4186  ax-pow 4234  ax-pr 4269  ax-un 4498  ax-setind 4603  ax-cnex 8051  ax-resscn 8052  ax-1cn 8053  ax-1re 8054  ax-icn 8055  ax-addcl 8056  ax-addrcl 8057  ax-mulcl 8058  ax-addcom 8060  ax-addass 8062  ax-i2m1 8065  ax-0lt1 8066  ax-0id 8068  ax-rnegex 8069  ax-pre-ltirr 8072  ax-pre-lttrn 8074  ax-pre-ltadd 8076
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-nel 2474  df-ral 2491  df-rex 2492  df-reu 2493  df-rmo 2494  df-rab 2495  df-v 2778  df-sbc 3006  df-csb 3102  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-nul 3469  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-int 3900  df-iun 3943  df-br 4060  df-opab 4122  df-mpt 4123  df-id 4358  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-res 4705  df-ima 4706  df-iota 5251  df-fun 5292  df-fn 5293  df-f 5294  df-f1 5295  df-fo 5296  df-f1o 5297  df-fv 5298  df-riota 5922  df-ov 5970  df-oprab 5971  df-mpo 5972  df-tpos 6354  df-pnf 8144  df-mnf 8145  df-ltxr 8147  df-inn 9072  df-2 9130  df-3 9131  df-ndx 12950  df-slot 12951  df-base 12953  df-sets 12954  df-iress 12955  df-plusg 13037  df-mulr 13038  df-0g 13205  df-mgm 13303  df-sgrp 13349  df-mnd 13364  df-grp 13450  df-minusg 13451  df-cmn 13737  df-abl 13738  df-mgp 13798  df-ur 13837  df-srg 13841  df-ring 13875  df-oppr 13945  df-dvdsr 13966  df-unit 13967  df-invr 13998
This theorem is referenced by:  unitinvcl  14000  unitinvinv  14001  unitlinv  14003  unitrinv  14004  rdivmuldivd  14021  invrpropdg  14026  subrgugrp  14117
  Copyright terms: Public domain W3C validator