ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  invrfvald Unicode version

Theorem invrfvald 13618
Description: Multiplicative inverse function for a ring. (Contributed by NM, 21-Sep-2011.) (Revised by Mario Carneiro, 25-Dec-2014.)
Hypotheses
Ref Expression
invrfvald.u  |-  ( ph  ->  U  =  (Unit `  R ) )
invrfvald.g  |-  ( ph  ->  G  =  ( (mulGrp `  R )s  U ) )
invrfvald.i  |-  ( ph  ->  I  =  ( invr `  R ) )
invrfvald.r  |-  ( ph  ->  R  e.  Ring )
Assertion
Ref Expression
invrfvald  |-  ( ph  ->  I  =  ( invg `  G ) )

Proof of Theorem invrfvald
Dummy variable  r is distinct from all other variables.
StepHypRef Expression
1 invrfvald.u . . . 4  |-  ( ph  ->  U  =  (Unit `  R ) )
21oveq2d 5934 . . 3  |-  ( ph  ->  ( (mulGrp `  R
)s 
U )  =  ( (mulGrp `  R )s  (Unit `  R ) ) )
32fveq2d 5558 . 2  |-  ( ph  ->  ( invg `  ( (mulGrp `  R )s  U
) )  =  ( invg `  (
(mulGrp `  R )s  (Unit `  R ) ) ) )
4 invrfvald.g . . 3  |-  ( ph  ->  G  =  ( (mulGrp `  R )s  U ) )
54fveq2d 5558 . 2  |-  ( ph  ->  ( invg `  G )  =  ( invg `  (
(mulGrp `  R )s  U
) ) )
6 invrfvald.i . . 3  |-  ( ph  ->  I  =  ( invr `  R ) )
7 df-invr 13617 . . . 4  |-  invr  =  ( r  e.  _V  |->  ( invg `  (
(mulGrp `  r )s  (Unit `  r ) ) ) )
8 fveq2 5554 . . . . . 6  |-  ( r  =  R  ->  (mulGrp `  r )  =  (mulGrp `  R ) )
9 fveq2 5554 . . . . . 6  |-  ( r  =  R  ->  (Unit `  r )  =  (Unit `  R ) )
108, 9oveq12d 5936 . . . . 5  |-  ( r  =  R  ->  (
(mulGrp `  r )s  (Unit `  r ) )  =  ( (mulGrp `  R
)s  (Unit `  R )
) )
1110fveq2d 5558 . . . 4  |-  ( r  =  R  ->  ( invg `  ( (mulGrp `  r )s  (Unit `  r )
) )  =  ( invg `  (
(mulGrp `  R )s  (Unit `  R ) ) ) )
12 invrfvald.r . . . . 5  |-  ( ph  ->  R  e.  Ring )
1312elexd 2773 . . . 4  |-  ( ph  ->  R  e.  _V )
14 eqid 2193 . . . . . . . 8  |-  (Unit `  R )  =  (Unit `  R )
15 eqid 2193 . . . . . . . 8  |-  ( (mulGrp `  R )s  (Unit `  R )
)  =  ( (mulGrp `  R )s  (Unit `  R )
)
1614, 15unitgrp 13612 . . . . . . 7  |-  ( R  e.  Ring  ->  ( (mulGrp `  R )s  (Unit `  R )
)  e.  Grp )
1712, 16syl 14 . . . . . 6  |-  ( ph  ->  ( (mulGrp `  R
)s  (Unit `  R )
)  e.  Grp )
18 eqid 2193 . . . . . . 7  |-  ( Base `  ( (mulGrp `  R
)s  (Unit `  R )
) )  =  (
Base `  ( (mulGrp `  R )s  (Unit `  R )
) )
19 eqid 2193 . . . . . . 7  |-  ( invg `  ( (mulGrp `  R )s  (Unit `  R )
) )  =  ( invg `  (
(mulGrp `  R )s  (Unit `  R ) ) )
2018, 19grpinvfng 13116 . . . . . 6  |-  ( ( (mulGrp `  R )s  (Unit `  R ) )  e. 
Grp  ->  ( invg `  ( (mulGrp `  R
)s  (Unit `  R )
) )  Fn  ( Base `  ( (mulGrp `  R )s  (Unit `  R )
) ) )
2117, 20syl 14 . . . . 5  |-  ( ph  ->  ( invg `  ( (mulGrp `  R )s  (Unit `  R ) ) )  Fn  ( Base `  (
(mulGrp `  R )s  (Unit `  R ) ) ) )
22 basfn 12676 . . . . . 6  |-  Base  Fn  _V
2317elexd 2773 . . . . . 6  |-  ( ph  ->  ( (mulGrp `  R
)s  (Unit `  R )
)  e.  _V )
24 funfvex 5571 . . . . . . 7  |-  ( ( Fun  Base  /\  (
(mulGrp `  R )s  (Unit `  R ) )  e. 
dom  Base )  ->  ( Base `  ( (mulGrp `  R )s  (Unit `  R )
) )  e.  _V )
2524funfni 5354 . . . . . 6  |-  ( (
Base  Fn  _V  /\  (
(mulGrp `  R )s  (Unit `  R ) )  e. 
_V )  ->  ( Base `  ( (mulGrp `  R )s  (Unit `  R )
) )  e.  _V )
2622, 23, 25sylancr 414 . . . . 5  |-  ( ph  ->  ( Base `  (
(mulGrp `  R )s  (Unit `  R ) ) )  e.  _V )
27 fnex 5780 . . . . 5  |-  ( ( ( invg `  ( (mulGrp `  R )s  (Unit `  R ) ) )  Fn  ( Base `  (
(mulGrp `  R )s  (Unit `  R ) ) )  /\  ( Base `  (
(mulGrp `  R )s  (Unit `  R ) ) )  e.  _V )  -> 
( invg `  ( (mulGrp `  R )s  (Unit `  R ) ) )  e.  _V )
2821, 26, 27syl2anc 411 . . . 4  |-  ( ph  ->  ( invg `  ( (mulGrp `  R )s  (Unit `  R ) ) )  e.  _V )
297, 11, 13, 28fvmptd3 5651 . . 3  |-  ( ph  ->  ( invr `  R
)  =  ( invg `  ( (mulGrp `  R )s  (Unit `  R )
) ) )
306, 29eqtrd 2226 . 2  |-  ( ph  ->  I  =  ( invg `  ( (mulGrp `  R )s  (Unit `  R )
) ) )
313, 5, 303eqtr4rd 2237 1  |-  ( ph  ->  I  =  ( invg `  G ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1364    e. wcel 2164   _Vcvv 2760    Fn wfn 5249   ` cfv 5254  (class class class)co 5918   Basecbs 12618   ↾s cress 12619   Grpcgrp 13072   invgcminusg 13073  mulGrpcmgp 13416   Ringcrg 13492  Unitcui 13583   invrcinvr 13616
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4144  ax-sep 4147  ax-nul 4155  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-cnex 7963  ax-resscn 7964  ax-1cn 7965  ax-1re 7966  ax-icn 7967  ax-addcl 7968  ax-addrcl 7969  ax-mulcl 7970  ax-addcom 7972  ax-addass 7974  ax-i2m1 7977  ax-0lt1 7978  ax-0id 7980  ax-rnegex 7981  ax-pre-ltirr 7984  ax-pre-lttrn 7986  ax-pre-ltadd 7988
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-id 4324  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-fv 5262  df-riota 5873  df-ov 5921  df-oprab 5922  df-mpo 5923  df-tpos 6298  df-pnf 8056  df-mnf 8057  df-ltxr 8059  df-inn 8983  df-2 9041  df-3 9042  df-ndx 12621  df-slot 12622  df-base 12624  df-sets 12625  df-iress 12626  df-plusg 12708  df-mulr 12709  df-0g 12869  df-mgm 12939  df-sgrp 12985  df-mnd 12998  df-grp 13075  df-minusg 13076  df-cmn 13356  df-abl 13357  df-mgp 13417  df-ur 13456  df-srg 13460  df-ring 13494  df-oppr 13564  df-dvdsr 13585  df-unit 13586  df-invr 13617
This theorem is referenced by:  unitinvcl  13619  unitinvinv  13620  unitlinv  13622  unitrinv  13623  rdivmuldivd  13640  invrpropdg  13645  subrgugrp  13736
  Copyright terms: Public domain W3C validator