ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  invrfvald Unicode version

Theorem invrfvald 13754
Description: Multiplicative inverse function for a ring. (Contributed by NM, 21-Sep-2011.) (Revised by Mario Carneiro, 25-Dec-2014.)
Hypotheses
Ref Expression
invrfvald.u  |-  ( ph  ->  U  =  (Unit `  R ) )
invrfvald.g  |-  ( ph  ->  G  =  ( (mulGrp `  R )s  U ) )
invrfvald.i  |-  ( ph  ->  I  =  ( invr `  R ) )
invrfvald.r  |-  ( ph  ->  R  e.  Ring )
Assertion
Ref Expression
invrfvald  |-  ( ph  ->  I  =  ( invg `  G ) )

Proof of Theorem invrfvald
Dummy variable  r is distinct from all other variables.
StepHypRef Expression
1 invrfvald.u . . . 4  |-  ( ph  ->  U  =  (Unit `  R ) )
21oveq2d 5941 . . 3  |-  ( ph  ->  ( (mulGrp `  R
)s 
U )  =  ( (mulGrp `  R )s  (Unit `  R ) ) )
32fveq2d 5565 . 2  |-  ( ph  ->  ( invg `  ( (mulGrp `  R )s  U
) )  =  ( invg `  (
(mulGrp `  R )s  (Unit `  R ) ) ) )
4 invrfvald.g . . 3  |-  ( ph  ->  G  =  ( (mulGrp `  R )s  U ) )
54fveq2d 5565 . 2  |-  ( ph  ->  ( invg `  G )  =  ( invg `  (
(mulGrp `  R )s  U
) ) )
6 invrfvald.i . . 3  |-  ( ph  ->  I  =  ( invr `  R ) )
7 df-invr 13753 . . . 4  |-  invr  =  ( r  e.  _V  |->  ( invg `  (
(mulGrp `  r )s  (Unit `  r ) ) ) )
8 fveq2 5561 . . . . . 6  |-  ( r  =  R  ->  (mulGrp `  r )  =  (mulGrp `  R ) )
9 fveq2 5561 . . . . . 6  |-  ( r  =  R  ->  (Unit `  r )  =  (Unit `  R ) )
108, 9oveq12d 5943 . . . . 5  |-  ( r  =  R  ->  (
(mulGrp `  r )s  (Unit `  r ) )  =  ( (mulGrp `  R
)s  (Unit `  R )
) )
1110fveq2d 5565 . . . 4  |-  ( r  =  R  ->  ( invg `  ( (mulGrp `  r )s  (Unit `  r )
) )  =  ( invg `  (
(mulGrp `  R )s  (Unit `  R ) ) ) )
12 invrfvald.r . . . . 5  |-  ( ph  ->  R  e.  Ring )
1312elexd 2776 . . . 4  |-  ( ph  ->  R  e.  _V )
14 eqid 2196 . . . . . . . 8  |-  (Unit `  R )  =  (Unit `  R )
15 eqid 2196 . . . . . . . 8  |-  ( (mulGrp `  R )s  (Unit `  R )
)  =  ( (mulGrp `  R )s  (Unit `  R )
)
1614, 15unitgrp 13748 . . . . . . 7  |-  ( R  e.  Ring  ->  ( (mulGrp `  R )s  (Unit `  R )
)  e.  Grp )
1712, 16syl 14 . . . . . 6  |-  ( ph  ->  ( (mulGrp `  R
)s  (Unit `  R )
)  e.  Grp )
18 eqid 2196 . . . . . . 7  |-  ( Base `  ( (mulGrp `  R
)s  (Unit `  R )
) )  =  (
Base `  ( (mulGrp `  R )s  (Unit `  R )
) )
19 eqid 2196 . . . . . . 7  |-  ( invg `  ( (mulGrp `  R )s  (Unit `  R )
) )  =  ( invg `  (
(mulGrp `  R )s  (Unit `  R ) ) )
2018, 19grpinvfng 13246 . . . . . 6  |-  ( ( (mulGrp `  R )s  (Unit `  R ) )  e. 
Grp  ->  ( invg `  ( (mulGrp `  R
)s  (Unit `  R )
) )  Fn  ( Base `  ( (mulGrp `  R )s  (Unit `  R )
) ) )
2117, 20syl 14 . . . . 5  |-  ( ph  ->  ( invg `  ( (mulGrp `  R )s  (Unit `  R ) ) )  Fn  ( Base `  (
(mulGrp `  R )s  (Unit `  R ) ) ) )
22 basfn 12761 . . . . . 6  |-  Base  Fn  _V
2317elexd 2776 . . . . . 6  |-  ( ph  ->  ( (mulGrp `  R
)s  (Unit `  R )
)  e.  _V )
24 funfvex 5578 . . . . . . 7  |-  ( ( Fun  Base  /\  (
(mulGrp `  R )s  (Unit `  R ) )  e. 
dom  Base )  ->  ( Base `  ( (mulGrp `  R )s  (Unit `  R )
) )  e.  _V )
2524funfni 5361 . . . . . 6  |-  ( (
Base  Fn  _V  /\  (
(mulGrp `  R )s  (Unit `  R ) )  e. 
_V )  ->  ( Base `  ( (mulGrp `  R )s  (Unit `  R )
) )  e.  _V )
2622, 23, 25sylancr 414 . . . . 5  |-  ( ph  ->  ( Base `  (
(mulGrp `  R )s  (Unit `  R ) ) )  e.  _V )
27 fnex 5787 . . . . 5  |-  ( ( ( invg `  ( (mulGrp `  R )s  (Unit `  R ) ) )  Fn  ( Base `  (
(mulGrp `  R )s  (Unit `  R ) ) )  /\  ( Base `  (
(mulGrp `  R )s  (Unit `  R ) ) )  e.  _V )  -> 
( invg `  ( (mulGrp `  R )s  (Unit `  R ) ) )  e.  _V )
2821, 26, 27syl2anc 411 . . . 4  |-  ( ph  ->  ( invg `  ( (mulGrp `  R )s  (Unit `  R ) ) )  e.  _V )
297, 11, 13, 28fvmptd3 5658 . . 3  |-  ( ph  ->  ( invr `  R
)  =  ( invg `  ( (mulGrp `  R )s  (Unit `  R )
) ) )
306, 29eqtrd 2229 . 2  |-  ( ph  ->  I  =  ( invg `  ( (mulGrp `  R )s  (Unit `  R )
) ) )
313, 5, 303eqtr4rd 2240 1  |-  ( ph  ->  I  =  ( invg `  G ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1364    e. wcel 2167   _Vcvv 2763    Fn wfn 5254   ` cfv 5259  (class class class)co 5925   Basecbs 12703   ↾s cress 12704   Grpcgrp 13202   invgcminusg 13203  mulGrpcmgp 13552   Ringcrg 13628  Unitcui 13719   invrcinvr 13752
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-nul 4160  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-cnex 7987  ax-resscn 7988  ax-1cn 7989  ax-1re 7990  ax-icn 7991  ax-addcl 7992  ax-addrcl 7993  ax-mulcl 7994  ax-addcom 7996  ax-addass 7998  ax-i2m1 8001  ax-0lt1 8002  ax-0id 8004  ax-rnegex 8005  ax-pre-ltirr 8008  ax-pre-lttrn 8010  ax-pre-ltadd 8012
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-id 4329  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-riota 5880  df-ov 5928  df-oprab 5929  df-mpo 5930  df-tpos 6312  df-pnf 8080  df-mnf 8081  df-ltxr 8083  df-inn 9008  df-2 9066  df-3 9067  df-ndx 12706  df-slot 12707  df-base 12709  df-sets 12710  df-iress 12711  df-plusg 12793  df-mulr 12794  df-0g 12960  df-mgm 13058  df-sgrp 13104  df-mnd 13119  df-grp 13205  df-minusg 13206  df-cmn 13492  df-abl 13493  df-mgp 13553  df-ur 13592  df-srg 13596  df-ring 13630  df-oppr 13700  df-dvdsr 13721  df-unit 13722  df-invr 13753
This theorem is referenced by:  unitinvcl  13755  unitinvinv  13756  unitlinv  13758  unitrinv  13759  rdivmuldivd  13776  invrpropdg  13781  subrgugrp  13872
  Copyright terms: Public domain W3C validator