ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  invrfvald Unicode version

Theorem invrfvald 13884
Description: Multiplicative inverse function for a ring. (Contributed by NM, 21-Sep-2011.) (Revised by Mario Carneiro, 25-Dec-2014.)
Hypotheses
Ref Expression
invrfvald.u  |-  ( ph  ->  U  =  (Unit `  R ) )
invrfvald.g  |-  ( ph  ->  G  =  ( (mulGrp `  R )s  U ) )
invrfvald.i  |-  ( ph  ->  I  =  ( invr `  R ) )
invrfvald.r  |-  ( ph  ->  R  e.  Ring )
Assertion
Ref Expression
invrfvald  |-  ( ph  ->  I  =  ( invg `  G ) )

Proof of Theorem invrfvald
Dummy variable  r is distinct from all other variables.
StepHypRef Expression
1 invrfvald.u . . . 4  |-  ( ph  ->  U  =  (Unit `  R ) )
21oveq2d 5960 . . 3  |-  ( ph  ->  ( (mulGrp `  R
)s 
U )  =  ( (mulGrp `  R )s  (Unit `  R ) ) )
32fveq2d 5580 . 2  |-  ( ph  ->  ( invg `  ( (mulGrp `  R )s  U
) )  =  ( invg `  (
(mulGrp `  R )s  (Unit `  R ) ) ) )
4 invrfvald.g . . 3  |-  ( ph  ->  G  =  ( (mulGrp `  R )s  U ) )
54fveq2d 5580 . 2  |-  ( ph  ->  ( invg `  G )  =  ( invg `  (
(mulGrp `  R )s  U
) ) )
6 invrfvald.i . . 3  |-  ( ph  ->  I  =  ( invr `  R ) )
7 df-invr 13883 . . . 4  |-  invr  =  ( r  e.  _V  |->  ( invg `  (
(mulGrp `  r )s  (Unit `  r ) ) ) )
8 fveq2 5576 . . . . . 6  |-  ( r  =  R  ->  (mulGrp `  r )  =  (mulGrp `  R ) )
9 fveq2 5576 . . . . . 6  |-  ( r  =  R  ->  (Unit `  r )  =  (Unit `  R ) )
108, 9oveq12d 5962 . . . . 5  |-  ( r  =  R  ->  (
(mulGrp `  r )s  (Unit `  r ) )  =  ( (mulGrp `  R
)s  (Unit `  R )
) )
1110fveq2d 5580 . . . 4  |-  ( r  =  R  ->  ( invg `  ( (mulGrp `  r )s  (Unit `  r )
) )  =  ( invg `  (
(mulGrp `  R )s  (Unit `  R ) ) ) )
12 invrfvald.r . . . . 5  |-  ( ph  ->  R  e.  Ring )
1312elexd 2785 . . . 4  |-  ( ph  ->  R  e.  _V )
14 eqid 2205 . . . . . . . 8  |-  (Unit `  R )  =  (Unit `  R )
15 eqid 2205 . . . . . . . 8  |-  ( (mulGrp `  R )s  (Unit `  R )
)  =  ( (mulGrp `  R )s  (Unit `  R )
)
1614, 15unitgrp 13878 . . . . . . 7  |-  ( R  e.  Ring  ->  ( (mulGrp `  R )s  (Unit `  R )
)  e.  Grp )
1712, 16syl 14 . . . . . 6  |-  ( ph  ->  ( (mulGrp `  R
)s  (Unit `  R )
)  e.  Grp )
18 eqid 2205 . . . . . . 7  |-  ( Base `  ( (mulGrp `  R
)s  (Unit `  R )
) )  =  (
Base `  ( (mulGrp `  R )s  (Unit `  R )
) )
19 eqid 2205 . . . . . . 7  |-  ( invg `  ( (mulGrp `  R )s  (Unit `  R )
) )  =  ( invg `  (
(mulGrp `  R )s  (Unit `  R ) ) )
2018, 19grpinvfng 13376 . . . . . 6  |-  ( ( (mulGrp `  R )s  (Unit `  R ) )  e. 
Grp  ->  ( invg `  ( (mulGrp `  R
)s  (Unit `  R )
) )  Fn  ( Base `  ( (mulGrp `  R )s  (Unit `  R )
) ) )
2117, 20syl 14 . . . . 5  |-  ( ph  ->  ( invg `  ( (mulGrp `  R )s  (Unit `  R ) ) )  Fn  ( Base `  (
(mulGrp `  R )s  (Unit `  R ) ) ) )
22 basfn 12890 . . . . . 6  |-  Base  Fn  _V
2317elexd 2785 . . . . . 6  |-  ( ph  ->  ( (mulGrp `  R
)s  (Unit `  R )
)  e.  _V )
24 funfvex 5593 . . . . . . 7  |-  ( ( Fun  Base  /\  (
(mulGrp `  R )s  (Unit `  R ) )  e. 
dom  Base )  ->  ( Base `  ( (mulGrp `  R )s  (Unit `  R )
) )  e.  _V )
2524funfni 5376 . . . . . 6  |-  ( (
Base  Fn  _V  /\  (
(mulGrp `  R )s  (Unit `  R ) )  e. 
_V )  ->  ( Base `  ( (mulGrp `  R )s  (Unit `  R )
) )  e.  _V )
2622, 23, 25sylancr 414 . . . . 5  |-  ( ph  ->  ( Base `  (
(mulGrp `  R )s  (Unit `  R ) ) )  e.  _V )
27 fnex 5806 . . . . 5  |-  ( ( ( invg `  ( (mulGrp `  R )s  (Unit `  R ) ) )  Fn  ( Base `  (
(mulGrp `  R )s  (Unit `  R ) ) )  /\  ( Base `  (
(mulGrp `  R )s  (Unit `  R ) ) )  e.  _V )  -> 
( invg `  ( (mulGrp `  R )s  (Unit `  R ) ) )  e.  _V )
2821, 26, 27syl2anc 411 . . . 4  |-  ( ph  ->  ( invg `  ( (mulGrp `  R )s  (Unit `  R ) ) )  e.  _V )
297, 11, 13, 28fvmptd3 5673 . . 3  |-  ( ph  ->  ( invr `  R
)  =  ( invg `  ( (mulGrp `  R )s  (Unit `  R )
) ) )
306, 29eqtrd 2238 . 2  |-  ( ph  ->  I  =  ( invg `  ( (mulGrp `  R )s  (Unit `  R )
) ) )
313, 5, 303eqtr4rd 2249 1  |-  ( ph  ->  I  =  ( invg `  G ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1373    e. wcel 2176   _Vcvv 2772    Fn wfn 5266   ` cfv 5271  (class class class)co 5944   Basecbs 12832   ↾s cress 12833   Grpcgrp 13332   invgcminusg 13333  mulGrpcmgp 13682   Ringcrg 13758  Unitcui 13849   invrcinvr 13882
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-coll 4159  ax-sep 4162  ax-nul 4170  ax-pow 4218  ax-pr 4253  ax-un 4480  ax-setind 4585  ax-cnex 8016  ax-resscn 8017  ax-1cn 8018  ax-1re 8019  ax-icn 8020  ax-addcl 8021  ax-addrcl 8022  ax-mulcl 8023  ax-addcom 8025  ax-addass 8027  ax-i2m1 8030  ax-0lt1 8031  ax-0id 8033  ax-rnegex 8034  ax-pre-ltirr 8037  ax-pre-lttrn 8039  ax-pre-ltadd 8041
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-nel 2472  df-ral 2489  df-rex 2490  df-reu 2491  df-rmo 2492  df-rab 2493  df-v 2774  df-sbc 2999  df-csb 3094  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3461  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-int 3886  df-iun 3929  df-br 4045  df-opab 4106  df-mpt 4107  df-id 4340  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-rn 4686  df-res 4687  df-ima 4688  df-iota 5232  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-riota 5899  df-ov 5947  df-oprab 5948  df-mpo 5949  df-tpos 6331  df-pnf 8109  df-mnf 8110  df-ltxr 8112  df-inn 9037  df-2 9095  df-3 9096  df-ndx 12835  df-slot 12836  df-base 12838  df-sets 12839  df-iress 12840  df-plusg 12922  df-mulr 12923  df-0g 13090  df-mgm 13188  df-sgrp 13234  df-mnd 13249  df-grp 13335  df-minusg 13336  df-cmn 13622  df-abl 13623  df-mgp 13683  df-ur 13722  df-srg 13726  df-ring 13760  df-oppr 13830  df-dvdsr 13851  df-unit 13852  df-invr 13883
This theorem is referenced by:  unitinvcl  13885  unitinvinv  13886  unitlinv  13888  unitrinv  13889  rdivmuldivd  13906  invrpropdg  13911  subrgugrp  14002
  Copyright terms: Public domain W3C validator