ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  invrfvald Unicode version

Theorem invrfvald 14086
Description: Multiplicative inverse function for a ring. (Contributed by NM, 21-Sep-2011.) (Revised by Mario Carneiro, 25-Dec-2014.)
Hypotheses
Ref Expression
invrfvald.u  |-  ( ph  ->  U  =  (Unit `  R ) )
invrfvald.g  |-  ( ph  ->  G  =  ( (mulGrp `  R )s  U ) )
invrfvald.i  |-  ( ph  ->  I  =  ( invr `  R ) )
invrfvald.r  |-  ( ph  ->  R  e.  Ring )
Assertion
Ref Expression
invrfvald  |-  ( ph  ->  I  =  ( invg `  G ) )

Proof of Theorem invrfvald
Dummy variable  r is distinct from all other variables.
StepHypRef Expression
1 invrfvald.u . . . 4  |-  ( ph  ->  U  =  (Unit `  R ) )
21oveq2d 6017 . . 3  |-  ( ph  ->  ( (mulGrp `  R
)s 
U )  =  ( (mulGrp `  R )s  (Unit `  R ) ) )
32fveq2d 5631 . 2  |-  ( ph  ->  ( invg `  ( (mulGrp `  R )s  U
) )  =  ( invg `  (
(mulGrp `  R )s  (Unit `  R ) ) ) )
4 invrfvald.g . . 3  |-  ( ph  ->  G  =  ( (mulGrp `  R )s  U ) )
54fveq2d 5631 . 2  |-  ( ph  ->  ( invg `  G )  =  ( invg `  (
(mulGrp `  R )s  U
) ) )
6 invrfvald.i . . 3  |-  ( ph  ->  I  =  ( invr `  R ) )
7 df-invr 14085 . . . 4  |-  invr  =  ( r  e.  _V  |->  ( invg `  (
(mulGrp `  r )s  (Unit `  r ) ) ) )
8 fveq2 5627 . . . . . 6  |-  ( r  =  R  ->  (mulGrp `  r )  =  (mulGrp `  R ) )
9 fveq2 5627 . . . . . 6  |-  ( r  =  R  ->  (Unit `  r )  =  (Unit `  R ) )
108, 9oveq12d 6019 . . . . 5  |-  ( r  =  R  ->  (
(mulGrp `  r )s  (Unit `  r ) )  =  ( (mulGrp `  R
)s  (Unit `  R )
) )
1110fveq2d 5631 . . . 4  |-  ( r  =  R  ->  ( invg `  ( (mulGrp `  r )s  (Unit `  r )
) )  =  ( invg `  (
(mulGrp `  R )s  (Unit `  R ) ) ) )
12 invrfvald.r . . . . 5  |-  ( ph  ->  R  e.  Ring )
1312elexd 2813 . . . 4  |-  ( ph  ->  R  e.  _V )
14 eqid 2229 . . . . . . . 8  |-  (Unit `  R )  =  (Unit `  R )
15 eqid 2229 . . . . . . . 8  |-  ( (mulGrp `  R )s  (Unit `  R )
)  =  ( (mulGrp `  R )s  (Unit `  R )
)
1614, 15unitgrp 14080 . . . . . . 7  |-  ( R  e.  Ring  ->  ( (mulGrp `  R )s  (Unit `  R )
)  e.  Grp )
1712, 16syl 14 . . . . . 6  |-  ( ph  ->  ( (mulGrp `  R
)s  (Unit `  R )
)  e.  Grp )
18 eqid 2229 . . . . . . 7  |-  ( Base `  ( (mulGrp `  R
)s  (Unit `  R )
) )  =  (
Base `  ( (mulGrp `  R )s  (Unit `  R )
) )
19 eqid 2229 . . . . . . 7  |-  ( invg `  ( (mulGrp `  R )s  (Unit `  R )
) )  =  ( invg `  (
(mulGrp `  R )s  (Unit `  R ) ) )
2018, 19grpinvfng 13577 . . . . . 6  |-  ( ( (mulGrp `  R )s  (Unit `  R ) )  e. 
Grp  ->  ( invg `  ( (mulGrp `  R
)s  (Unit `  R )
) )  Fn  ( Base `  ( (mulGrp `  R )s  (Unit `  R )
) ) )
2117, 20syl 14 . . . . 5  |-  ( ph  ->  ( invg `  ( (mulGrp `  R )s  (Unit `  R ) ) )  Fn  ( Base `  (
(mulGrp `  R )s  (Unit `  R ) ) ) )
22 basfn 13091 . . . . . 6  |-  Base  Fn  _V
2317elexd 2813 . . . . . 6  |-  ( ph  ->  ( (mulGrp `  R
)s  (Unit `  R )
)  e.  _V )
24 funfvex 5644 . . . . . . 7  |-  ( ( Fun  Base  /\  (
(mulGrp `  R )s  (Unit `  R ) )  e. 
dom  Base )  ->  ( Base `  ( (mulGrp `  R )s  (Unit `  R )
) )  e.  _V )
2524funfni 5423 . . . . . 6  |-  ( (
Base  Fn  _V  /\  (
(mulGrp `  R )s  (Unit `  R ) )  e. 
_V )  ->  ( Base `  ( (mulGrp `  R )s  (Unit `  R )
) )  e.  _V )
2622, 23, 25sylancr 414 . . . . 5  |-  ( ph  ->  ( Base `  (
(mulGrp `  R )s  (Unit `  R ) ) )  e.  _V )
27 fnex 5861 . . . . 5  |-  ( ( ( invg `  ( (mulGrp `  R )s  (Unit `  R ) ) )  Fn  ( Base `  (
(mulGrp `  R )s  (Unit `  R ) ) )  /\  ( Base `  (
(mulGrp `  R )s  (Unit `  R ) ) )  e.  _V )  -> 
( invg `  ( (mulGrp `  R )s  (Unit `  R ) ) )  e.  _V )
2821, 26, 27syl2anc 411 . . . 4  |-  ( ph  ->  ( invg `  ( (mulGrp `  R )s  (Unit `  R ) ) )  e.  _V )
297, 11, 13, 28fvmptd3 5728 . . 3  |-  ( ph  ->  ( invr `  R
)  =  ( invg `  ( (mulGrp `  R )s  (Unit `  R )
) ) )
306, 29eqtrd 2262 . 2  |-  ( ph  ->  I  =  ( invg `  ( (mulGrp `  R )s  (Unit `  R )
) ) )
313, 5, 303eqtr4rd 2273 1  |-  ( ph  ->  I  =  ( invg `  G ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1395    e. wcel 2200   _Vcvv 2799    Fn wfn 5313   ` cfv 5318  (class class class)co 6001   Basecbs 13032   ↾s cress 13033   Grpcgrp 13533   invgcminusg 13534  mulGrpcmgp 13883   Ringcrg 13959  Unitcui 14050   invrcinvr 14084
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4199  ax-sep 4202  ax-nul 4210  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-cnex 8090  ax-resscn 8091  ax-1cn 8092  ax-1re 8093  ax-icn 8094  ax-addcl 8095  ax-addrcl 8096  ax-mulcl 8097  ax-addcom 8099  ax-addass 8101  ax-i2m1 8104  ax-0lt1 8105  ax-0id 8107  ax-rnegex 8108  ax-pre-ltirr 8111  ax-pre-lttrn 8113  ax-pre-ltadd 8115
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-iun 3967  df-br 4084  df-opab 4146  df-mpt 4147  df-id 4384  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-fo 5324  df-f1o 5325  df-fv 5326  df-riota 5954  df-ov 6004  df-oprab 6005  df-mpo 6006  df-tpos 6391  df-pnf 8183  df-mnf 8184  df-ltxr 8186  df-inn 9111  df-2 9169  df-3 9170  df-ndx 13035  df-slot 13036  df-base 13038  df-sets 13039  df-iress 13040  df-plusg 13123  df-mulr 13124  df-0g 13291  df-mgm 13389  df-sgrp 13435  df-mnd 13450  df-grp 13536  df-minusg 13537  df-cmn 13823  df-abl 13824  df-mgp 13884  df-ur 13923  df-srg 13927  df-ring 13961  df-oppr 14031  df-dvdsr 14052  df-unit 14053  df-invr 14085
This theorem is referenced by:  unitinvcl  14087  unitinvinv  14088  unitlinv  14090  unitrinv  14091  rdivmuldivd  14108  invrpropdg  14113  subrgugrp  14204
  Copyright terms: Public domain W3C validator