ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elfz1eq Unicode version

Theorem elfz1eq 10101
Description: Membership in a finite set of sequential integers containing one integer. (Contributed by NM, 19-Sep-2005.)
Assertion
Ref Expression
elfz1eq  |-  ( K  e.  ( N ... N )  ->  K  =  N )

Proof of Theorem elfz1eq
StepHypRef Expression
1 elfzle2 10094 . 2  |-  ( K  e.  ( N ... N )  ->  K  <_  N )
2 elfzle1 10093 . 2  |-  ( K  e.  ( N ... N )  ->  N  <_  K )
3 elfzelz 10091 . . 3  |-  ( K  e.  ( N ... N )  ->  K  e.  ZZ )
4 elfzel2 10089 . . 3  |-  ( K  e.  ( N ... N )  ->  N  e.  ZZ )
5 zre 9321 . . . 4  |-  ( K  e.  ZZ  ->  K  e.  RR )
6 zre 9321 . . . 4  |-  ( N  e.  ZZ  ->  N  e.  RR )
7 letri3 8100 . . . 4  |-  ( ( K  e.  RR  /\  N  e.  RR )  ->  ( K  =  N  <-> 
( K  <_  N  /\  N  <_  K ) ) )
85, 6, 7syl2an 289 . . 3  |-  ( ( K  e.  ZZ  /\  N  e.  ZZ )  ->  ( K  =  N  <-> 
( K  <_  N  /\  N  <_  K ) ) )
93, 4, 8syl2anc 411 . 2  |-  ( K  e.  ( N ... N )  ->  ( K  =  N  <->  ( K  <_  N  /\  N  <_  K ) ) )
101, 2, 9mpbir2and 946 1  |-  ( K  e.  ( N ... N )  ->  K  =  N )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1364    e. wcel 2164   class class class wbr 4029  (class class class)co 5918   RRcr 7871    <_ cle 8055   ZZcz 9317   ...cfz 10074
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-cnex 7963  ax-resscn 7964  ax-pre-ltirr 7984  ax-pre-apti 7987
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-rab 2481  df-v 2762  df-sbc 2986  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-br 4030  df-opab 4091  df-mpt 4092  df-id 4324  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-fv 5262  df-ov 5921  df-oprab 5922  df-mpo 5923  df-pnf 8056  df-mnf 8057  df-xr 8058  df-ltxr 8059  df-le 8060  df-neg 8193  df-z 9318  df-uz 9593  df-fz 10075
This theorem is referenced by:  fzsn  10132  fz1sbc  10162  fzm1  10166  fz01or  10177  bccl  10838  sumsnf  11552  prmind2  12258  3prm  12266  ply1termlem  14888  2sqlem10  15212
  Copyright terms: Public domain W3C validator