ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elfz1eq Unicode version

Theorem elfz1eq 10231
Description: Membership in a finite set of sequential integers containing one integer. (Contributed by NM, 19-Sep-2005.)
Assertion
Ref Expression
elfz1eq  |-  ( K  e.  ( N ... N )  ->  K  =  N )

Proof of Theorem elfz1eq
StepHypRef Expression
1 elfzle2 10224 . 2  |-  ( K  e.  ( N ... N )  ->  K  <_  N )
2 elfzle1 10223 . 2  |-  ( K  e.  ( N ... N )  ->  N  <_  K )
3 elfzelz 10221 . . 3  |-  ( K  e.  ( N ... N )  ->  K  e.  ZZ )
4 elfzel2 10219 . . 3  |-  ( K  e.  ( N ... N )  ->  N  e.  ZZ )
5 zre 9450 . . . 4  |-  ( K  e.  ZZ  ->  K  e.  RR )
6 zre 9450 . . . 4  |-  ( N  e.  ZZ  ->  N  e.  RR )
7 letri3 8227 . . . 4  |-  ( ( K  e.  RR  /\  N  e.  RR )  ->  ( K  =  N  <-> 
( K  <_  N  /\  N  <_  K ) ) )
85, 6, 7syl2an 289 . . 3  |-  ( ( K  e.  ZZ  /\  N  e.  ZZ )  ->  ( K  =  N  <-> 
( K  <_  N  /\  N  <_  K ) ) )
93, 4, 8syl2anc 411 . 2  |-  ( K  e.  ( N ... N )  ->  ( K  =  N  <->  ( K  <_  N  /\  N  <_  K ) ) )
101, 2, 9mpbir2and 950 1  |-  ( K  e.  ( N ... N )  ->  K  =  N )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1395    e. wcel 2200   class class class wbr 4083  (class class class)co 6001   RRcr 7998    <_ cle 8182   ZZcz 9446   ...cfz 10204
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-cnex 8090  ax-resscn 8091  ax-pre-ltirr 8111  ax-pre-apti 8114
This theorem depends on definitions:  df-bi 117  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-rab 2517  df-v 2801  df-sbc 3029  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-br 4084  df-opab 4146  df-mpt 4147  df-id 4384  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-fv 5326  df-ov 6004  df-oprab 6005  df-mpo 6006  df-pnf 8183  df-mnf 8184  df-xr 8185  df-ltxr 8186  df-le 8187  df-neg 8320  df-z 9447  df-uz 9723  df-fz 10205
This theorem is referenced by:  fzsn  10262  fz1sbc  10292  fzm1  10296  fz01or  10307  bccl  10989  swrdccatin1  11257  sumsnf  11920  prmind2  12642  3prm  12650  ply1termlem  15416  2sqlem10  15804
  Copyright terms: Public domain W3C validator