ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fzo0dvdseq Unicode version

Theorem fzo0dvdseq 11999
Description: Zero is the only one of the first  A nonnegative integers that is divisible by  A. (Contributed by Stefan O'Rear, 6-Sep-2015.)
Assertion
Ref Expression
fzo0dvdseq  |-  ( B  e.  ( 0..^ A )  ->  ( A  ||  B  <->  B  =  0
) )

Proof of Theorem fzo0dvdseq
StepHypRef Expression
1 elfzolt2 10223 . . . . . . 7  |-  ( B  e.  ( 0..^ A )  ->  B  <  A )
2 elfzoelz 10213 . . . . . . . 8  |-  ( B  e.  ( 0..^ A )  ->  B  e.  ZZ )
3 elfzoel2 10212 . . . . . . . 8  |-  ( B  e.  ( 0..^ A )  ->  A  e.  ZZ )
4 zltnle 9363 . . . . . . . 8  |-  ( ( B  e.  ZZ  /\  A  e.  ZZ )  ->  ( B  <  A  <->  -.  A  <_  B )
)
52, 3, 4syl2anc 411 . . . . . . 7  |-  ( B  e.  ( 0..^ A )  ->  ( B  <  A  <->  -.  A  <_  B ) )
61, 5mpbid 147 . . . . . 6  |-  ( B  e.  ( 0..^ A )  ->  -.  A  <_  B )
76adantr 276 . . . . 5  |-  ( ( B  e.  ( 0..^ A )  /\  A  ||  B )  ->  -.  A  <_  B )
83adantr 276 . . . . . . 7  |-  ( ( B  e.  ( 0..^ A )  /\  B  =/=  0 )  ->  A  e.  ZZ )
9 elfzonn0 10253 . . . . . . . . . 10  |-  ( B  e.  ( 0..^ A )  ->  B  e.  NN0 )
109adantr 276 . . . . . . . . 9  |-  ( ( B  e.  ( 0..^ A )  /\  B  =/=  0 )  ->  B  e.  NN0 )
11 simpr 110 . . . . . . . . 9  |-  ( ( B  e.  ( 0..^ A )  /\  B  =/=  0 )  ->  B  =/=  0 )
12 eldifsn 3745 . . . . . . . . 9  |-  ( B  e.  ( NN0  \  {
0 } )  <->  ( B  e.  NN0  /\  B  =/=  0 ) )
1310, 11, 12sylanbrc 417 . . . . . . . 8  |-  ( ( B  e.  ( 0..^ A )  /\  B  =/=  0 )  ->  B  e.  ( NN0  \  {
0 } ) )
14 dfn2 9253 . . . . . . . 8  |-  NN  =  ( NN0  \  { 0 } )
1513, 14eleqtrrdi 2287 . . . . . . 7  |-  ( ( B  e.  ( 0..^ A )  /\  B  =/=  0 )  ->  B  e.  NN )
16 dvdsle 11986 . . . . . . 7  |-  ( ( A  e.  ZZ  /\  B  e.  NN )  ->  ( A  ||  B  ->  A  <_  B )
)
178, 15, 16syl2anc 411 . . . . . 6  |-  ( ( B  e.  ( 0..^ A )  /\  B  =/=  0 )  ->  ( A  ||  B  ->  A  <_  B ) )
1817impancom 260 . . . . 5  |-  ( ( B  e.  ( 0..^ A )  /\  A  ||  B )  ->  ( B  =/=  0  ->  A  <_  B ) )
197, 18mtod 664 . . . 4  |-  ( ( B  e.  ( 0..^ A )  /\  A  ||  B )  ->  -.  B  =/=  0 )
20 0z 9328 . . . . . . . 8  |-  0  e.  ZZ
21 zdceq 9392 . . . . . . . 8  |-  ( ( B  e.  ZZ  /\  0  e.  ZZ )  -> DECID  B  =  0 )
2220, 21mpan2 425 . . . . . . 7  |-  ( B  e.  ZZ  -> DECID  B  =  0
)
23 nnedc 2369 . . . . . . 7  |-  (DECID  B  =  0  ->  ( -.  B  =/=  0  <->  B  = 
0 ) )
2422, 23syl 14 . . . . . 6  |-  ( B  e.  ZZ  ->  ( -.  B  =/=  0  <->  B  =  0 ) )
252, 24syl 14 . . . . 5  |-  ( B  e.  ( 0..^ A )  ->  ( -.  B  =/=  0  <->  B  = 
0 ) )
2625adantr 276 . . . 4  |-  ( ( B  e.  ( 0..^ A )  /\  A  ||  B )  ->  ( -.  B  =/=  0  <->  B  =  0 ) )
2719, 26mpbid 147 . . 3  |-  ( ( B  e.  ( 0..^ A )  /\  A  ||  B )  ->  B  =  0 )
2827ex 115 . 2  |-  ( B  e.  ( 0..^ A )  ->  ( A  ||  B  ->  B  = 
0 ) )
29 dvds0 11949 . . . 4  |-  ( A  e.  ZZ  ->  A  ||  0 )
303, 29syl 14 . . 3  |-  ( B  e.  ( 0..^ A )  ->  A  ||  0
)
31 breq2 4033 . . 3  |-  ( B  =  0  ->  ( A  ||  B  <->  A  ||  0
) )
3230, 31syl5ibrcom 157 . 2  |-  ( B  e.  ( 0..^ A )  ->  ( B  =  0  ->  A  ||  B ) )
3328, 32impbid 129 1  |-  ( B  e.  ( 0..^ A )  ->  ( A  ||  B  <->  B  =  0
) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105  DECID wdc 835    = wceq 1364    e. wcel 2164    =/= wne 2364    \ cdif 3150   {csn 3618   class class class wbr 4029  (class class class)co 5918   0cc0 7872    < clt 8054    <_ cle 8055   NNcn 8982   NN0cn0 9240   ZZcz 9317  ..^cfzo 10208    || cdvds 11930
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-cnex 7963  ax-resscn 7964  ax-1cn 7965  ax-1re 7966  ax-icn 7967  ax-addcl 7968  ax-addrcl 7969  ax-mulcl 7970  ax-mulrcl 7971  ax-addcom 7972  ax-mulcom 7973  ax-addass 7974  ax-mulass 7975  ax-distr 7976  ax-i2m1 7977  ax-0lt1 7978  ax-1rid 7979  ax-0id 7980  ax-rnegex 7981  ax-precex 7982  ax-cnre 7983  ax-pre-ltirr 7984  ax-pre-ltwlin 7985  ax-pre-lttrn 7986  ax-pre-apti 7987  ax-pre-ltadd 7988  ax-pre-mulgt0 7989  ax-pre-mulext 7990
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-id 4324  df-po 4327  df-iso 4328  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-fv 5262  df-riota 5873  df-ov 5921  df-oprab 5922  df-mpo 5923  df-1st 6193  df-2nd 6194  df-pnf 8056  df-mnf 8057  df-xr 8058  df-ltxr 8059  df-le 8060  df-sub 8192  df-neg 8193  df-reap 8594  df-ap 8601  df-div 8692  df-inn 8983  df-n0 9241  df-z 9318  df-uz 9593  df-q 9685  df-fz 10075  df-fzo 10209  df-dvds 11931
This theorem is referenced by:  fzocongeq  12000
  Copyright terms: Public domain W3C validator