![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > inffinp1 | GIF version |
Description: An infinite set contains an element not contained in a given finite subset. (Contributed by Jim Kingdon, 7-Aug-2023.) |
Ref | Expression |
---|---|
inffinp1.dc | ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 DECID 𝑥 = 𝑦) |
inffinp1.inf | ⊢ (𝜑 → ω ≼ 𝐴) |
inffinp1.ss | ⊢ (𝜑 → 𝐵 ⊆ 𝐴) |
inffinp1.b | ⊢ (𝜑 → 𝐵 ∈ Fin) |
Ref | Expression |
---|---|
inffinp1 | ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 ¬ 𝑥 ∈ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | inffinp1.dc | . . . 4 ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 DECID 𝑥 = 𝑦) | |
2 | inffinp1.inf | . . . 4 ⊢ (𝜑 → ω ≼ 𝐴) | |
3 | inffinp1.ss | . . . 4 ⊢ (𝜑 → 𝐵 ⊆ 𝐴) | |
4 | inffinp1.b | . . . 4 ⊢ (𝜑 → 𝐵 ∈ Fin) | |
5 | difinfinf 7099 | . . . 4 ⊢ (((∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 DECID 𝑥 = 𝑦 ∧ ω ≼ 𝐴) ∧ (𝐵 ⊆ 𝐴 ∧ 𝐵 ∈ Fin)) → ω ≼ (𝐴 ∖ 𝐵)) | |
6 | 1, 2, 3, 4, 5 | syl22anc 1239 | . . 3 ⊢ (𝜑 → ω ≼ (𝐴 ∖ 𝐵)) |
7 | infm 6903 | . . 3 ⊢ (ω ≼ (𝐴 ∖ 𝐵) → ∃𝑥 𝑥 ∈ (𝐴 ∖ 𝐵)) | |
8 | 6, 7 | syl 14 | . 2 ⊢ (𝜑 → ∃𝑥 𝑥 ∈ (𝐴 ∖ 𝐵)) |
9 | eldif 3138 | . . . 4 ⊢ (𝑥 ∈ (𝐴 ∖ 𝐵) ↔ (𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ 𝐵)) | |
10 | 9 | exbii 1605 | . . 3 ⊢ (∃𝑥 𝑥 ∈ (𝐴 ∖ 𝐵) ↔ ∃𝑥(𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ 𝐵)) |
11 | df-rex 2461 | . . 3 ⊢ (∃𝑥 ∈ 𝐴 ¬ 𝑥 ∈ 𝐵 ↔ ∃𝑥(𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ 𝐵)) | |
12 | 10, 11 | bitr4i 187 | . 2 ⊢ (∃𝑥 𝑥 ∈ (𝐴 ∖ 𝐵) ↔ ∃𝑥 ∈ 𝐴 ¬ 𝑥 ∈ 𝐵) |
13 | 8, 12 | sylib 122 | 1 ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 ¬ 𝑥 ∈ 𝐵) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 DECID wdc 834 ∃wex 1492 ∈ wcel 2148 ∀wral 2455 ∃wrex 2456 ∖ cdif 3126 ⊆ wss 3129 class class class wbr 4003 ωcom 4589 ≼ cdom 6738 Fincfn 6739 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-13 2150 ax-14 2151 ax-ext 2159 ax-coll 4118 ax-sep 4121 ax-nul 4129 ax-pow 4174 ax-pr 4209 ax-un 4433 ax-setind 4536 ax-iinf 4587 |
This theorem depends on definitions: df-bi 117 df-dc 835 df-3or 979 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ne 2348 df-ral 2460 df-rex 2461 df-reu 2462 df-rab 2464 df-v 2739 df-sbc 2963 df-csb 3058 df-dif 3131 df-un 3133 df-in 3135 df-ss 3142 df-nul 3423 df-if 3535 df-pw 3577 df-sn 3598 df-pr 3599 df-op 3601 df-uni 3810 df-int 3845 df-iun 3888 df-br 4004 df-opab 4065 df-mpt 4066 df-tr 4102 df-id 4293 df-iord 4366 df-on 4368 df-suc 4371 df-iom 4590 df-xp 4632 df-rel 4633 df-cnv 4634 df-co 4635 df-dm 4636 df-rn 4637 df-res 4638 df-ima 4639 df-iota 5178 df-fun 5218 df-fn 5219 df-f 5220 df-f1 5221 df-fo 5222 df-f1o 5223 df-fv 5224 df-1st 6140 df-2nd 6141 df-1o 6416 df-er 6534 df-en 6740 df-dom 6741 df-fin 6742 df-dju 7036 df-inl 7045 df-inr 7046 df-case 7082 |
This theorem is referenced by: ctinf 12430 |
Copyright terms: Public domain | W3C validator |