| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > inffinp1 | GIF version | ||
| Description: An infinite set contains an element not contained in a given finite subset. (Contributed by Jim Kingdon, 7-Aug-2023.) |
| Ref | Expression |
|---|---|
| inffinp1.dc | ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 DECID 𝑥 = 𝑦) |
| inffinp1.inf | ⊢ (𝜑 → ω ≼ 𝐴) |
| inffinp1.ss | ⊢ (𝜑 → 𝐵 ⊆ 𝐴) |
| inffinp1.b | ⊢ (𝜑 → 𝐵 ∈ Fin) |
| Ref | Expression |
|---|---|
| inffinp1 | ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 ¬ 𝑥 ∈ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | inffinp1.dc | . . . 4 ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 DECID 𝑥 = 𝑦) | |
| 2 | inffinp1.inf | . . . 4 ⊢ (𝜑 → ω ≼ 𝐴) | |
| 3 | inffinp1.ss | . . . 4 ⊢ (𝜑 → 𝐵 ⊆ 𝐴) | |
| 4 | inffinp1.b | . . . 4 ⊢ (𝜑 → 𝐵 ∈ Fin) | |
| 5 | difinfinf 7268 | . . . 4 ⊢ (((∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 DECID 𝑥 = 𝑦 ∧ ω ≼ 𝐴) ∧ (𝐵 ⊆ 𝐴 ∧ 𝐵 ∈ Fin)) → ω ≼ (𝐴 ∖ 𝐵)) | |
| 6 | 1, 2, 3, 4, 5 | syl22anc 1272 | . . 3 ⊢ (𝜑 → ω ≼ (𝐴 ∖ 𝐵)) |
| 7 | infm 7066 | . . 3 ⊢ (ω ≼ (𝐴 ∖ 𝐵) → ∃𝑥 𝑥 ∈ (𝐴 ∖ 𝐵)) | |
| 8 | 6, 7 | syl 14 | . 2 ⊢ (𝜑 → ∃𝑥 𝑥 ∈ (𝐴 ∖ 𝐵)) |
| 9 | eldif 3206 | . . . 4 ⊢ (𝑥 ∈ (𝐴 ∖ 𝐵) ↔ (𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ 𝐵)) | |
| 10 | 9 | exbii 1651 | . . 3 ⊢ (∃𝑥 𝑥 ∈ (𝐴 ∖ 𝐵) ↔ ∃𝑥(𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ 𝐵)) |
| 11 | df-rex 2514 | . . 3 ⊢ (∃𝑥 ∈ 𝐴 ¬ 𝑥 ∈ 𝐵 ↔ ∃𝑥(𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ 𝐵)) | |
| 12 | 10, 11 | bitr4i 187 | . 2 ⊢ (∃𝑥 𝑥 ∈ (𝐴 ∖ 𝐵) ↔ ∃𝑥 ∈ 𝐴 ¬ 𝑥 ∈ 𝐵) |
| 13 | 8, 12 | sylib 122 | 1 ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 ¬ 𝑥 ∈ 𝐵) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 DECID wdc 839 ∃wex 1538 ∈ wcel 2200 ∀wral 2508 ∃wrex 2509 ∖ cdif 3194 ⊆ wss 3197 class class class wbr 4083 ωcom 4682 ≼ cdom 6886 Fincfn 6887 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-coll 4199 ax-sep 4202 ax-nul 4210 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-setind 4629 ax-iinf 4680 |
| This theorem depends on definitions: df-bi 117 df-dc 840 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-ral 2513 df-rex 2514 df-reu 2515 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-if 3603 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-int 3924 df-iun 3967 df-br 4084 df-opab 4146 df-mpt 4147 df-tr 4183 df-id 4384 df-iord 4457 df-on 4459 df-suc 4462 df-iom 4683 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-res 4731 df-ima 4732 df-iota 5278 df-fun 5320 df-fn 5321 df-f 5322 df-f1 5323 df-fo 5324 df-f1o 5325 df-fv 5326 df-1st 6286 df-2nd 6287 df-1o 6562 df-er 6680 df-en 6888 df-dom 6889 df-fin 6890 df-dju 7205 df-inl 7214 df-inr 7215 df-case 7251 |
| This theorem is referenced by: ctinf 13001 |
| Copyright terms: Public domain | W3C validator |