ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  inffinp1 GIF version

Theorem inffinp1 12589
Description: An infinite set contains an element not contained in a given finite subset. (Contributed by Jim Kingdon, 7-Aug-2023.)
Hypotheses
Ref Expression
inffinp1.dc (𝜑 → ∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦)
inffinp1.inf (𝜑 → ω ≼ 𝐴)
inffinp1.ss (𝜑𝐵𝐴)
inffinp1.b (𝜑𝐵 ∈ Fin)
Assertion
Ref Expression
inffinp1 (𝜑 → ∃𝑥𝐴 ¬ 𝑥𝐵)
Distinct variable groups:   𝑥,𝐴,𝑦   𝑥,𝐵
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝐵(𝑦)

Proof of Theorem inffinp1
StepHypRef Expression
1 inffinp1.dc . . . 4 (𝜑 → ∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦)
2 inffinp1.inf . . . 4 (𝜑 → ω ≼ 𝐴)
3 inffinp1.ss . . . 4 (𝜑𝐵𝐴)
4 inffinp1.b . . . 4 (𝜑𝐵 ∈ Fin)
5 difinfinf 7162 . . . 4 (((∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦 ∧ ω ≼ 𝐴) ∧ (𝐵𝐴𝐵 ∈ Fin)) → ω ≼ (𝐴𝐵))
61, 2, 3, 4, 5syl22anc 1250 . . 3 (𝜑 → ω ≼ (𝐴𝐵))
7 infm 6962 . . 3 (ω ≼ (𝐴𝐵) → ∃𝑥 𝑥 ∈ (𝐴𝐵))
86, 7syl 14 . 2 (𝜑 → ∃𝑥 𝑥 ∈ (𝐴𝐵))
9 eldif 3163 . . . 4 (𝑥 ∈ (𝐴𝐵) ↔ (𝑥𝐴 ∧ ¬ 𝑥𝐵))
109exbii 1616 . . 3 (∃𝑥 𝑥 ∈ (𝐴𝐵) ↔ ∃𝑥(𝑥𝐴 ∧ ¬ 𝑥𝐵))
11 df-rex 2478 . . 3 (∃𝑥𝐴 ¬ 𝑥𝐵 ↔ ∃𝑥(𝑥𝐴 ∧ ¬ 𝑥𝐵))
1210, 11bitr4i 187 . 2 (∃𝑥 𝑥 ∈ (𝐴𝐵) ↔ ∃𝑥𝐴 ¬ 𝑥𝐵)
138, 12sylib 122 1 (𝜑 → ∃𝑥𝐴 ¬ 𝑥𝐵)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  DECID wdc 835  wex 1503  wcel 2164  wral 2472  wrex 2473  cdif 3151  wss 3154   class class class wbr 4030  ωcom 4623  cdom 6795  Fincfn 6796
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4145  ax-sep 4148  ax-nul 4156  ax-pow 4204  ax-pr 4239  ax-un 4465  ax-setind 4570  ax-iinf 4621
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-ral 2477  df-rex 2478  df-reu 2479  df-rab 2481  df-v 2762  df-sbc 2987  df-csb 3082  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-nul 3448  df-if 3559  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-int 3872  df-iun 3915  df-br 4031  df-opab 4092  df-mpt 4093  df-tr 4129  df-id 4325  df-iord 4398  df-on 4400  df-suc 4403  df-iom 4624  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-ima 4673  df-iota 5216  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-1st 6195  df-2nd 6196  df-1o 6471  df-er 6589  df-en 6797  df-dom 6798  df-fin 6799  df-dju 7099  df-inl 7108  df-inr 7109  df-case 7145
This theorem is referenced by:  ctinf  12590
  Copyright terms: Public domain W3C validator