ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  inffinp1 GIF version

Theorem inffinp1 12800
Description: An infinite set contains an element not contained in a given finite subset. (Contributed by Jim Kingdon, 7-Aug-2023.)
Hypotheses
Ref Expression
inffinp1.dc (𝜑 → ∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦)
inffinp1.inf (𝜑 → ω ≼ 𝐴)
inffinp1.ss (𝜑𝐵𝐴)
inffinp1.b (𝜑𝐵 ∈ Fin)
Assertion
Ref Expression
inffinp1 (𝜑 → ∃𝑥𝐴 ¬ 𝑥𝐵)
Distinct variable groups:   𝑥,𝐴,𝑦   𝑥,𝐵
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝐵(𝑦)

Proof of Theorem inffinp1
StepHypRef Expression
1 inffinp1.dc . . . 4 (𝜑 → ∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦)
2 inffinp1.inf . . . 4 (𝜑 → ω ≼ 𝐴)
3 inffinp1.ss . . . 4 (𝜑𝐵𝐴)
4 inffinp1.b . . . 4 (𝜑𝐵 ∈ Fin)
5 difinfinf 7203 . . . 4 (((∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦 ∧ ω ≼ 𝐴) ∧ (𝐵𝐴𝐵 ∈ Fin)) → ω ≼ (𝐴𝐵))
61, 2, 3, 4, 5syl22anc 1251 . . 3 (𝜑 → ω ≼ (𝐴𝐵))
7 infm 7001 . . 3 (ω ≼ (𝐴𝐵) → ∃𝑥 𝑥 ∈ (𝐴𝐵))
86, 7syl 14 . 2 (𝜑 → ∃𝑥 𝑥 ∈ (𝐴𝐵))
9 eldif 3175 . . . 4 (𝑥 ∈ (𝐴𝐵) ↔ (𝑥𝐴 ∧ ¬ 𝑥𝐵))
109exbii 1628 . . 3 (∃𝑥 𝑥 ∈ (𝐴𝐵) ↔ ∃𝑥(𝑥𝐴 ∧ ¬ 𝑥𝐵))
11 df-rex 2490 . . 3 (∃𝑥𝐴 ¬ 𝑥𝐵 ↔ ∃𝑥(𝑥𝐴 ∧ ¬ 𝑥𝐵))
1210, 11bitr4i 187 . 2 (∃𝑥 𝑥 ∈ (𝐴𝐵) ↔ ∃𝑥𝐴 ¬ 𝑥𝐵)
138, 12sylib 122 1 (𝜑 → ∃𝑥𝐴 ¬ 𝑥𝐵)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  DECID wdc 836  wex 1515  wcel 2176  wral 2484  wrex 2485  cdif 3163  wss 3166   class class class wbr 4044  ωcom 4638  cdom 6826  Fincfn 6827
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-coll 4159  ax-sep 4162  ax-nul 4170  ax-pow 4218  ax-pr 4253  ax-un 4480  ax-setind 4585  ax-iinf 4636
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-ral 2489  df-rex 2490  df-reu 2491  df-rab 2493  df-v 2774  df-sbc 2999  df-csb 3094  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3461  df-if 3572  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-int 3886  df-iun 3929  df-br 4045  df-opab 4106  df-mpt 4107  df-tr 4143  df-id 4340  df-iord 4413  df-on 4415  df-suc 4418  df-iom 4639  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-rn 4686  df-res 4687  df-ima 4688  df-iota 5232  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-1st 6226  df-2nd 6227  df-1o 6502  df-er 6620  df-en 6828  df-dom 6829  df-fin 6830  df-dju 7140  df-inl 7149  df-inr 7150  df-case 7186
This theorem is referenced by:  ctinf  12801
  Copyright terms: Public domain W3C validator