ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  inffinp1 GIF version

Theorem inffinp1 12429
Description: An infinite set contains an element not contained in a given finite subset. (Contributed by Jim Kingdon, 7-Aug-2023.)
Hypotheses
Ref Expression
inffinp1.dc (𝜑 → ∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦)
inffinp1.inf (𝜑 → ω ≼ 𝐴)
inffinp1.ss (𝜑𝐵𝐴)
inffinp1.b (𝜑𝐵 ∈ Fin)
Assertion
Ref Expression
inffinp1 (𝜑 → ∃𝑥𝐴 ¬ 𝑥𝐵)
Distinct variable groups:   𝑥,𝐴,𝑦   𝑥,𝐵
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝐵(𝑦)

Proof of Theorem inffinp1
StepHypRef Expression
1 inffinp1.dc . . . 4 (𝜑 → ∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦)
2 inffinp1.inf . . . 4 (𝜑 → ω ≼ 𝐴)
3 inffinp1.ss . . . 4 (𝜑𝐵𝐴)
4 inffinp1.b . . . 4 (𝜑𝐵 ∈ Fin)
5 difinfinf 7099 . . . 4 (((∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦 ∧ ω ≼ 𝐴) ∧ (𝐵𝐴𝐵 ∈ Fin)) → ω ≼ (𝐴𝐵))
61, 2, 3, 4, 5syl22anc 1239 . . 3 (𝜑 → ω ≼ (𝐴𝐵))
7 infm 6903 . . 3 (ω ≼ (𝐴𝐵) → ∃𝑥 𝑥 ∈ (𝐴𝐵))
86, 7syl 14 . 2 (𝜑 → ∃𝑥 𝑥 ∈ (𝐴𝐵))
9 eldif 3138 . . . 4 (𝑥 ∈ (𝐴𝐵) ↔ (𝑥𝐴 ∧ ¬ 𝑥𝐵))
109exbii 1605 . . 3 (∃𝑥 𝑥 ∈ (𝐴𝐵) ↔ ∃𝑥(𝑥𝐴 ∧ ¬ 𝑥𝐵))
11 df-rex 2461 . . 3 (∃𝑥𝐴 ¬ 𝑥𝐵 ↔ ∃𝑥(𝑥𝐴 ∧ ¬ 𝑥𝐵))
1210, 11bitr4i 187 . 2 (∃𝑥 𝑥 ∈ (𝐴𝐵) ↔ ∃𝑥𝐴 ¬ 𝑥𝐵)
138, 12sylib 122 1 (𝜑 → ∃𝑥𝐴 ¬ 𝑥𝐵)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  DECID wdc 834  wex 1492  wcel 2148  wral 2455  wrex 2456  cdif 3126  wss 3129   class class class wbr 4003  ωcom 4589  cdom 6738  Fincfn 6739
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4118  ax-sep 4121  ax-nul 4129  ax-pow 4174  ax-pr 4209  ax-un 4433  ax-setind 4536  ax-iinf 4587
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-ral 2460  df-rex 2461  df-reu 2462  df-rab 2464  df-v 2739  df-sbc 2963  df-csb 3058  df-dif 3131  df-un 3133  df-in 3135  df-ss 3142  df-nul 3423  df-if 3535  df-pw 3577  df-sn 3598  df-pr 3599  df-op 3601  df-uni 3810  df-int 3845  df-iun 3888  df-br 4004  df-opab 4065  df-mpt 4066  df-tr 4102  df-id 4293  df-iord 4366  df-on 4368  df-suc 4371  df-iom 4590  df-xp 4632  df-rel 4633  df-cnv 4634  df-co 4635  df-dm 4636  df-rn 4637  df-res 4638  df-ima 4639  df-iota 5178  df-fun 5218  df-fn 5219  df-f 5220  df-f1 5221  df-fo 5222  df-f1o 5223  df-fv 5224  df-1st 6140  df-2nd 6141  df-1o 6416  df-er 6534  df-en 6740  df-dom 6741  df-fin 6742  df-dju 7036  df-inl 7045  df-inr 7046  df-case 7082
This theorem is referenced by:  ctinf  12430
  Copyright terms: Public domain W3C validator