Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > inffinp1 | GIF version |
Description: An infinite set contains an element not contained in a given finite subset. (Contributed by Jim Kingdon, 7-Aug-2023.) |
Ref | Expression |
---|---|
inffinp1.dc | ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 DECID 𝑥 = 𝑦) |
inffinp1.inf | ⊢ (𝜑 → ω ≼ 𝐴) |
inffinp1.ss | ⊢ (𝜑 → 𝐵 ⊆ 𝐴) |
inffinp1.b | ⊢ (𝜑 → 𝐵 ∈ Fin) |
Ref | Expression |
---|---|
inffinp1 | ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 ¬ 𝑥 ∈ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | inffinp1.dc | . . . 4 ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 DECID 𝑥 = 𝑦) | |
2 | inffinp1.inf | . . . 4 ⊢ (𝜑 → ω ≼ 𝐴) | |
3 | inffinp1.ss | . . . 4 ⊢ (𝜑 → 𝐵 ⊆ 𝐴) | |
4 | inffinp1.b | . . . 4 ⊢ (𝜑 → 𝐵 ∈ Fin) | |
5 | difinfinf 7078 | . . . 4 ⊢ (((∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 DECID 𝑥 = 𝑦 ∧ ω ≼ 𝐴) ∧ (𝐵 ⊆ 𝐴 ∧ 𝐵 ∈ Fin)) → ω ≼ (𝐴 ∖ 𝐵)) | |
6 | 1, 2, 3, 4, 5 | syl22anc 1234 | . . 3 ⊢ (𝜑 → ω ≼ (𝐴 ∖ 𝐵)) |
7 | infm 6882 | . . 3 ⊢ (ω ≼ (𝐴 ∖ 𝐵) → ∃𝑥 𝑥 ∈ (𝐴 ∖ 𝐵)) | |
8 | 6, 7 | syl 14 | . 2 ⊢ (𝜑 → ∃𝑥 𝑥 ∈ (𝐴 ∖ 𝐵)) |
9 | eldif 3130 | . . . 4 ⊢ (𝑥 ∈ (𝐴 ∖ 𝐵) ↔ (𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ 𝐵)) | |
10 | 9 | exbii 1598 | . . 3 ⊢ (∃𝑥 𝑥 ∈ (𝐴 ∖ 𝐵) ↔ ∃𝑥(𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ 𝐵)) |
11 | df-rex 2454 | . . 3 ⊢ (∃𝑥 ∈ 𝐴 ¬ 𝑥 ∈ 𝐵 ↔ ∃𝑥(𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ 𝐵)) | |
12 | 10, 11 | bitr4i 186 | . 2 ⊢ (∃𝑥 𝑥 ∈ (𝐴 ∖ 𝐵) ↔ ∃𝑥 ∈ 𝐴 ¬ 𝑥 ∈ 𝐵) |
13 | 8, 12 | sylib 121 | 1 ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 ¬ 𝑥 ∈ 𝐵) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 103 DECID wdc 829 ∃wex 1485 ∈ wcel 2141 ∀wral 2448 ∃wrex 2449 ∖ cdif 3118 ⊆ wss 3121 class class class wbr 3989 ωcom 4574 ≼ cdom 6717 Fincfn 6718 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-coll 4104 ax-sep 4107 ax-nul 4115 ax-pow 4160 ax-pr 4194 ax-un 4418 ax-setind 4521 ax-iinf 4572 |
This theorem depends on definitions: df-bi 116 df-dc 830 df-3or 974 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-ral 2453 df-rex 2454 df-reu 2455 df-rab 2457 df-v 2732 df-sbc 2956 df-csb 3050 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-nul 3415 df-if 3527 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-int 3832 df-iun 3875 df-br 3990 df-opab 4051 df-mpt 4052 df-tr 4088 df-id 4278 df-iord 4351 df-on 4353 df-suc 4356 df-iom 4575 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-rn 4622 df-res 4623 df-ima 4624 df-iota 5160 df-fun 5200 df-fn 5201 df-f 5202 df-f1 5203 df-fo 5204 df-f1o 5205 df-fv 5206 df-1st 6119 df-2nd 6120 df-1o 6395 df-er 6513 df-en 6719 df-dom 6720 df-fin 6721 df-dju 7015 df-inl 7024 df-inr 7025 df-case 7061 |
This theorem is referenced by: ctinf 12385 |
Copyright terms: Public domain | W3C validator |