| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > inffinp1 | GIF version | ||
| Description: An infinite set contains an element not contained in a given finite subset. (Contributed by Jim Kingdon, 7-Aug-2023.) |
| Ref | Expression |
|---|---|
| inffinp1.dc | ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 DECID 𝑥 = 𝑦) |
| inffinp1.inf | ⊢ (𝜑 → ω ≼ 𝐴) |
| inffinp1.ss | ⊢ (𝜑 → 𝐵 ⊆ 𝐴) |
| inffinp1.b | ⊢ (𝜑 → 𝐵 ∈ Fin) |
| Ref | Expression |
|---|---|
| inffinp1 | ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 ¬ 𝑥 ∈ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | inffinp1.dc | . . . 4 ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 DECID 𝑥 = 𝑦) | |
| 2 | inffinp1.inf | . . . 4 ⊢ (𝜑 → ω ≼ 𝐴) | |
| 3 | inffinp1.ss | . . . 4 ⊢ (𝜑 → 𝐵 ⊆ 𝐴) | |
| 4 | inffinp1.b | . . . 4 ⊢ (𝜑 → 𝐵 ∈ Fin) | |
| 5 | difinfinf 7229 | . . . 4 ⊢ (((∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 DECID 𝑥 = 𝑦 ∧ ω ≼ 𝐴) ∧ (𝐵 ⊆ 𝐴 ∧ 𝐵 ∈ Fin)) → ω ≼ (𝐴 ∖ 𝐵)) | |
| 6 | 1, 2, 3, 4, 5 | syl22anc 1251 | . . 3 ⊢ (𝜑 → ω ≼ (𝐴 ∖ 𝐵)) |
| 7 | infm 7027 | . . 3 ⊢ (ω ≼ (𝐴 ∖ 𝐵) → ∃𝑥 𝑥 ∈ (𝐴 ∖ 𝐵)) | |
| 8 | 6, 7 | syl 14 | . 2 ⊢ (𝜑 → ∃𝑥 𝑥 ∈ (𝐴 ∖ 𝐵)) |
| 9 | eldif 3183 | . . . 4 ⊢ (𝑥 ∈ (𝐴 ∖ 𝐵) ↔ (𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ 𝐵)) | |
| 10 | 9 | exbii 1629 | . . 3 ⊢ (∃𝑥 𝑥 ∈ (𝐴 ∖ 𝐵) ↔ ∃𝑥(𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ 𝐵)) |
| 11 | df-rex 2492 | . . 3 ⊢ (∃𝑥 ∈ 𝐴 ¬ 𝑥 ∈ 𝐵 ↔ ∃𝑥(𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ 𝐵)) | |
| 12 | 10, 11 | bitr4i 187 | . 2 ⊢ (∃𝑥 𝑥 ∈ (𝐴 ∖ 𝐵) ↔ ∃𝑥 ∈ 𝐴 ¬ 𝑥 ∈ 𝐵) |
| 13 | 8, 12 | sylib 122 | 1 ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 ¬ 𝑥 ∈ 𝐵) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 DECID wdc 836 ∃wex 1516 ∈ wcel 2178 ∀wral 2486 ∃wrex 2487 ∖ cdif 3171 ⊆ wss 3174 class class class wbr 4059 ωcom 4656 ≼ cdom 6849 Fincfn 6850 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2180 ax-14 2181 ax-ext 2189 ax-coll 4175 ax-sep 4178 ax-nul 4186 ax-pow 4234 ax-pr 4269 ax-un 4498 ax-setind 4603 ax-iinf 4654 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ne 2379 df-ral 2491 df-rex 2492 df-reu 2493 df-rab 2495 df-v 2778 df-sbc 3006 df-csb 3102 df-dif 3176 df-un 3178 df-in 3180 df-ss 3187 df-nul 3469 df-if 3580 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-int 3900 df-iun 3943 df-br 4060 df-opab 4122 df-mpt 4123 df-tr 4159 df-id 4358 df-iord 4431 df-on 4433 df-suc 4436 df-iom 4657 df-xp 4699 df-rel 4700 df-cnv 4701 df-co 4702 df-dm 4703 df-rn 4704 df-res 4705 df-ima 4706 df-iota 5251 df-fun 5292 df-fn 5293 df-f 5294 df-f1 5295 df-fo 5296 df-f1o 5297 df-fv 5298 df-1st 6249 df-2nd 6250 df-1o 6525 df-er 6643 df-en 6851 df-dom 6852 df-fin 6853 df-dju 7166 df-inl 7175 df-inr 7176 df-case 7212 |
| This theorem is referenced by: ctinf 12916 |
| Copyright terms: Public domain | W3C validator |