| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > elioc2 | Unicode version | ||
| Description: Membership in an open-below, closed-above real interval. (Contributed by Paul Chapman, 30-Dec-2007.) (Revised by Mario Carneiro, 14-Jun-2014.) |
| Ref | Expression |
|---|---|
| elioc2 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rexr 8118 |
. . 3
| |
| 2 | elioc1 10044 |
. . 3
| |
| 3 | 1, 2 | sylan2 286 |
. 2
|
| 4 | mnfxr 8129 |
. . . . . . . 8
| |
| 5 | 4 | a1i 9 |
. . . . . . 7
|
| 6 | simpll 527 |
. . . . . . 7
| |
| 7 | simpr1 1006 |
. . . . . . 7
| |
| 8 | mnfle 9914 |
. . . . . . . 8
| |
| 9 | 8 | ad2antrr 488 |
. . . . . . 7
|
| 10 | simpr2 1007 |
. . . . . . 7
| |
| 11 | 5, 6, 7, 9, 10 | xrlelttrd 9932 |
. . . . . 6
|
| 12 | 1 | ad2antlr 489 |
. . . . . . 7
|
| 13 | pnfxr 8125 |
. . . . . . . 8
| |
| 14 | 13 | a1i 9 |
. . . . . . 7
|
| 15 | simpr3 1008 |
. . . . . . 7
| |
| 16 | ltpnf 9902 |
. . . . . . . 8
| |
| 17 | 16 | ad2antlr 489 |
. . . . . . 7
|
| 18 | 7, 12, 14, 15, 17 | xrlelttrd 9932 |
. . . . . 6
|
| 19 | xrrebnd 9941 |
. . . . . . 7
| |
| 20 | 7, 19 | syl 14 |
. . . . . 6
|
| 21 | 11, 18, 20 | mpbir2and 947 |
. . . . 5
|
| 22 | 21, 10, 15 | 3jca 1180 |
. . . 4
|
| 23 | 22 | ex 115 |
. . 3
|
| 24 | rexr 8118 |
. . . 4
| |
| 25 | 24 | 3anim1i 1188 |
. . 3
|
| 26 | 23, 25 | impbid1 142 |
. 2
|
| 27 | 3, 26 | bitrd 188 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-sep 4162 ax-pow 4218 ax-pr 4253 ax-un 4480 ax-setind 4585 ax-cnex 8016 ax-resscn 8017 ax-pre-ltirr 8037 ax-pre-ltwlin 8038 ax-pre-lttrn 8039 |
| This theorem depends on definitions: df-bi 117 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ne 2377 df-nel 2472 df-ral 2489 df-rex 2490 df-rab 2493 df-v 2774 df-sbc 2999 df-dif 3168 df-un 3170 df-in 3172 df-ss 3179 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-br 4045 df-opab 4106 df-id 4340 df-po 4343 df-iso 4344 df-xp 4681 df-rel 4682 df-cnv 4683 df-co 4684 df-dm 4685 df-iota 5232 df-fun 5273 df-fv 5279 df-ov 5947 df-oprab 5948 df-mpo 5949 df-pnf 8109 df-mnf 8110 df-xr 8111 df-ltxr 8112 df-le 8113 df-ioc 10015 |
| This theorem is referenced by: iocssre 10075 ef01bndlem 12067 sin01bnd 12068 cos01bnd 12069 cos1bnd 12070 sinltxirr 12072 sin01gt0 12073 cos01gt0 12074 sin02gt0 12075 sincos1sgn 12076 sincos2sgn 12077 cos12dec 12079 sin0pilem1 15253 sin0pilem2 15254 sinhalfpilem 15263 sincosq1lem 15297 coseq0negpitopi 15308 tangtx 15310 sincos4thpi 15312 pigt3 15316 |
| Copyright terms: Public domain | W3C validator |