ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elioc2 Unicode version

Theorem elioc2 10011
Description: Membership in an open-below, closed-above real interval. (Contributed by Paul Chapman, 30-Dec-2007.) (Revised by Mario Carneiro, 14-Jun-2014.)
Assertion
Ref Expression
elioc2  |-  ( ( A  e.  RR*  /\  B  e.  RR )  ->  ( C  e.  ( A (,] B )  <->  ( C  e.  RR  /\  A  < 
C  /\  C  <_  B ) ) )

Proof of Theorem elioc2
StepHypRef Expression
1 rexr 8072 . . 3  |-  ( B  e.  RR  ->  B  e.  RR* )
2 elioc1 9997 . . 3  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  ( C  e.  ( A (,] B )  <->  ( C  e.  RR*  /\  A  < 
C  /\  C  <_  B ) ) )
31, 2sylan2 286 . 2  |-  ( ( A  e.  RR*  /\  B  e.  RR )  ->  ( C  e.  ( A (,] B )  <->  ( C  e.  RR*  /\  A  < 
C  /\  C  <_  B ) ) )
4 mnfxr 8083 . . . . . . . 8  |- -oo  e.  RR*
54a1i 9 . . . . . . 7  |-  ( ( ( A  e.  RR*  /\  B  e.  RR )  /\  ( C  e. 
RR*  /\  A  <  C  /\  C  <_  B
) )  -> -oo  e.  RR* )
6 simpll 527 . . . . . . 7  |-  ( ( ( A  e.  RR*  /\  B  e.  RR )  /\  ( C  e. 
RR*  /\  A  <  C  /\  C  <_  B
) )  ->  A  e.  RR* )
7 simpr1 1005 . . . . . . 7  |-  ( ( ( A  e.  RR*  /\  B  e.  RR )  /\  ( C  e. 
RR*  /\  A  <  C  /\  C  <_  B
) )  ->  C  e.  RR* )
8 mnfle 9867 . . . . . . . 8  |-  ( A  e.  RR*  -> -oo  <_  A )
98ad2antrr 488 . . . . . . 7  |-  ( ( ( A  e.  RR*  /\  B  e.  RR )  /\  ( C  e. 
RR*  /\  A  <  C  /\  C  <_  B
) )  -> -oo  <_  A )
10 simpr2 1006 . . . . . . 7  |-  ( ( ( A  e.  RR*  /\  B  e.  RR )  /\  ( C  e. 
RR*  /\  A  <  C  /\  C  <_  B
) )  ->  A  <  C )
115, 6, 7, 9, 10xrlelttrd 9885 . . . . . 6  |-  ( ( ( A  e.  RR*  /\  B  e.  RR )  /\  ( C  e. 
RR*  /\  A  <  C  /\  C  <_  B
) )  -> -oo  <  C )
121ad2antlr 489 . . . . . . 7  |-  ( ( ( A  e.  RR*  /\  B  e.  RR )  /\  ( C  e. 
RR*  /\  A  <  C  /\  C  <_  B
) )  ->  B  e.  RR* )
13 pnfxr 8079 . . . . . . . 8  |- +oo  e.  RR*
1413a1i 9 . . . . . . 7  |-  ( ( ( A  e.  RR*  /\  B  e.  RR )  /\  ( C  e. 
RR*  /\  A  <  C  /\  C  <_  B
) )  -> +oo  e.  RR* )
15 simpr3 1007 . . . . . . 7  |-  ( ( ( A  e.  RR*  /\  B  e.  RR )  /\  ( C  e. 
RR*  /\  A  <  C  /\  C  <_  B
) )  ->  C  <_  B )
16 ltpnf 9855 . . . . . . . 8  |-  ( B  e.  RR  ->  B  < +oo )
1716ad2antlr 489 . . . . . . 7  |-  ( ( ( A  e.  RR*  /\  B  e.  RR )  /\  ( C  e. 
RR*  /\  A  <  C  /\  C  <_  B
) )  ->  B  < +oo )
187, 12, 14, 15, 17xrlelttrd 9885 . . . . . 6  |-  ( ( ( A  e.  RR*  /\  B  e.  RR )  /\  ( C  e. 
RR*  /\  A  <  C  /\  C  <_  B
) )  ->  C  < +oo )
19 xrrebnd 9894 . . . . . . 7  |-  ( C  e.  RR*  ->  ( C  e.  RR  <->  ( -oo  <  C  /\  C  < +oo ) ) )
207, 19syl 14 . . . . . 6  |-  ( ( ( A  e.  RR*  /\  B  e.  RR )  /\  ( C  e. 
RR*  /\  A  <  C  /\  C  <_  B
) )  ->  ( C  e.  RR  <->  ( -oo  <  C  /\  C  < +oo ) ) )
2111, 18, 20mpbir2and 946 . . . . 5  |-  ( ( ( A  e.  RR*  /\  B  e.  RR )  /\  ( C  e. 
RR*  /\  A  <  C  /\  C  <_  B
) )  ->  C  e.  RR )
2221, 10, 153jca 1179 . . . 4  |-  ( ( ( A  e.  RR*  /\  B  e.  RR )  /\  ( C  e. 
RR*  /\  A  <  C  /\  C  <_  B
) )  ->  ( C  e.  RR  /\  A  <  C  /\  C  <_  B ) )
2322ex 115 . . 3  |-  ( ( A  e.  RR*  /\  B  e.  RR )  ->  (
( C  e.  RR*  /\  A  <  C  /\  C  <_  B )  -> 
( C  e.  RR  /\  A  <  C  /\  C  <_  B ) ) )
24 rexr 8072 . . . 4  |-  ( C  e.  RR  ->  C  e.  RR* )
25243anim1i 1187 . . 3  |-  ( ( C  e.  RR  /\  A  <  C  /\  C  <_  B )  ->  ( C  e.  RR*  /\  A  <  C  /\  C  <_  B ) )
2623, 25impbid1 142 . 2  |-  ( ( A  e.  RR*  /\  B  e.  RR )  ->  (
( C  e.  RR*  /\  A  <  C  /\  C  <_  B )  <->  ( C  e.  RR  /\  A  < 
C  /\  C  <_  B ) ) )
273, 26bitrd 188 1  |-  ( ( A  e.  RR*  /\  B  e.  RR )  ->  ( C  e.  ( A (,] B )  <->  ( C  e.  RR  /\  A  < 
C  /\  C  <_  B ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 980    e. wcel 2167   class class class wbr 4033  (class class class)co 5922   RRcr 7878   +oocpnf 8058   -oocmnf 8059   RR*cxr 8060    < clt 8061    <_ cle 8062   (,]cioc 9964
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-cnex 7970  ax-resscn 7971  ax-pre-ltirr 7991  ax-pre-ltwlin 7992  ax-pre-lttrn 7993
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-rab 2484  df-v 2765  df-sbc 2990  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-br 4034  df-opab 4095  df-id 4328  df-po 4331  df-iso 4332  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-iota 5219  df-fun 5260  df-fv 5266  df-ov 5925  df-oprab 5926  df-mpo 5927  df-pnf 8063  df-mnf 8064  df-xr 8065  df-ltxr 8066  df-le 8067  df-ioc 9968
This theorem is referenced by:  iocssre  10028  ef01bndlem  11921  sin01bnd  11922  cos01bnd  11923  cos1bnd  11924  sinltxirr  11926  sin01gt0  11927  cos01gt0  11928  sin02gt0  11929  sincos1sgn  11930  sincos2sgn  11931  cos12dec  11933  sin0pilem1  15017  sin0pilem2  15018  sinhalfpilem  15027  sincosq1lem  15061  coseq0negpitopi  15072  tangtx  15074  sincos4thpi  15076  pigt3  15080
  Copyright terms: Public domain W3C validator