| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > elioc2 | Unicode version | ||
| Description: Membership in an open-below, closed-above real interval. (Contributed by Paul Chapman, 30-Dec-2007.) (Revised by Mario Carneiro, 14-Jun-2014.) |
| Ref | Expression |
|---|---|
| elioc2 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rexr 8120 |
. . 3
| |
| 2 | elioc1 10046 |
. . 3
| |
| 3 | 1, 2 | sylan2 286 |
. 2
|
| 4 | mnfxr 8131 |
. . . . . . . 8
| |
| 5 | 4 | a1i 9 |
. . . . . . 7
|
| 6 | simpll 527 |
. . . . . . 7
| |
| 7 | simpr1 1006 |
. . . . . . 7
| |
| 8 | mnfle 9916 |
. . . . . . . 8
| |
| 9 | 8 | ad2antrr 488 |
. . . . . . 7
|
| 10 | simpr2 1007 |
. . . . . . 7
| |
| 11 | 5, 6, 7, 9, 10 | xrlelttrd 9934 |
. . . . . 6
|
| 12 | 1 | ad2antlr 489 |
. . . . . . 7
|
| 13 | pnfxr 8127 |
. . . . . . . 8
| |
| 14 | 13 | a1i 9 |
. . . . . . 7
|
| 15 | simpr3 1008 |
. . . . . . 7
| |
| 16 | ltpnf 9904 |
. . . . . . . 8
| |
| 17 | 16 | ad2antlr 489 |
. . . . . . 7
|
| 18 | 7, 12, 14, 15, 17 | xrlelttrd 9934 |
. . . . . 6
|
| 19 | xrrebnd 9943 |
. . . . . . 7
| |
| 20 | 7, 19 | syl 14 |
. . . . . 6
|
| 21 | 11, 18, 20 | mpbir2and 947 |
. . . . 5
|
| 22 | 21, 10, 15 | 3jca 1180 |
. . . 4
|
| 23 | 22 | ex 115 |
. . 3
|
| 24 | rexr 8120 |
. . . 4
| |
| 25 | 24 | 3anim1i 1188 |
. . 3
|
| 26 | 23, 25 | impbid1 142 |
. 2
|
| 27 | 3, 26 | bitrd 188 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-sep 4163 ax-pow 4219 ax-pr 4254 ax-un 4481 ax-setind 4586 ax-cnex 8018 ax-resscn 8019 ax-pre-ltirr 8039 ax-pre-ltwlin 8040 ax-pre-lttrn 8041 |
| This theorem depends on definitions: df-bi 117 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ne 2377 df-nel 2472 df-ral 2489 df-rex 2490 df-rab 2493 df-v 2774 df-sbc 2999 df-dif 3168 df-un 3170 df-in 3172 df-ss 3179 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-br 4046 df-opab 4107 df-id 4341 df-po 4344 df-iso 4345 df-xp 4682 df-rel 4683 df-cnv 4684 df-co 4685 df-dm 4686 df-iota 5233 df-fun 5274 df-fv 5280 df-ov 5949 df-oprab 5950 df-mpo 5951 df-pnf 8111 df-mnf 8112 df-xr 8113 df-ltxr 8114 df-le 8115 df-ioc 10017 |
| This theorem is referenced by: iocssre 10077 ef01bndlem 12100 sin01bnd 12101 cos01bnd 12102 cos1bnd 12103 sinltxirr 12105 sin01gt0 12106 cos01gt0 12107 sin02gt0 12108 sincos1sgn 12109 sincos2sgn 12110 cos12dec 12112 sin0pilem1 15286 sin0pilem2 15287 sinhalfpilem 15296 sincosq1lem 15330 coseq0negpitopi 15341 tangtx 15343 sincos4thpi 15345 pigt3 15349 |
| Copyright terms: Public domain | W3C validator |