Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > elioc2 | Unicode version |
Description: Membership in an open-below, closed-above real interval. (Contributed by Paul Chapman, 30-Dec-2007.) (Revised by Mario Carneiro, 14-Jun-2014.) |
Ref | Expression |
---|---|
elioc2 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rexr 7906 | . . 3 | |
2 | elioc1 9808 | . . 3 | |
3 | 1, 2 | sylan2 284 | . 2 |
4 | mnfxr 7917 | . . . . . . . 8 | |
5 | 4 | a1i 9 | . . . . . . 7 |
6 | simpll 519 | . . . . . . 7 | |
7 | simpr1 988 | . . . . . . 7 | |
8 | mnfle 9681 | . . . . . . . 8 | |
9 | 8 | ad2antrr 480 | . . . . . . 7 |
10 | simpr2 989 | . . . . . . 7 | |
11 | 5, 6, 7, 9, 10 | xrlelttrd 9696 | . . . . . 6 |
12 | 1 | ad2antlr 481 | . . . . . . 7 |
13 | pnfxr 7913 | . . . . . . . 8 | |
14 | 13 | a1i 9 | . . . . . . 7 |
15 | simpr3 990 | . . . . . . 7 | |
16 | ltpnf 9669 | . . . . . . . 8 | |
17 | 16 | ad2antlr 481 | . . . . . . 7 |
18 | 7, 12, 14, 15, 17 | xrlelttrd 9696 | . . . . . 6 |
19 | xrrebnd 9705 | . . . . . . 7 | |
20 | 7, 19 | syl 14 | . . . . . 6 |
21 | 11, 18, 20 | mpbir2and 929 | . . . . 5 |
22 | 21, 10, 15 | 3jca 1162 | . . . 4 |
23 | 22 | ex 114 | . . 3 |
24 | rexr 7906 | . . . 4 | |
25 | 24 | 3anim1i 1168 | . . 3 |
26 | 23, 25 | impbid1 141 | . 2 |
27 | 3, 26 | bitrd 187 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 w3a 963 wcel 2128 class class class wbr 3965 (class class class)co 5818 cr 7714 cpnf 7892 cmnf 7893 cxr 7894 clt 7895 cle 7896 cioc 9775 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-13 2130 ax-14 2131 ax-ext 2139 ax-sep 4082 ax-pow 4134 ax-pr 4168 ax-un 4392 ax-setind 4494 ax-cnex 7806 ax-resscn 7807 ax-pre-ltirr 7827 ax-pre-ltwlin 7828 ax-pre-lttrn 7829 |
This theorem depends on definitions: df-bi 116 df-3or 964 df-3an 965 df-tru 1338 df-fal 1341 df-nf 1441 df-sb 1743 df-eu 2009 df-mo 2010 df-clab 2144 df-cleq 2150 df-clel 2153 df-nfc 2288 df-ne 2328 df-nel 2423 df-ral 2440 df-rex 2441 df-rab 2444 df-v 2714 df-sbc 2938 df-dif 3104 df-un 3106 df-in 3108 df-ss 3115 df-pw 3545 df-sn 3566 df-pr 3567 df-op 3569 df-uni 3773 df-br 3966 df-opab 4026 df-id 4252 df-po 4255 df-iso 4256 df-xp 4589 df-rel 4590 df-cnv 4591 df-co 4592 df-dm 4593 df-iota 5132 df-fun 5169 df-fv 5175 df-ov 5821 df-oprab 5822 df-mpo 5823 df-pnf 7897 df-mnf 7898 df-xr 7899 df-ltxr 7900 df-le 7901 df-ioc 9779 |
This theorem is referenced by: iocssre 9839 ef01bndlem 11635 sin01bnd 11636 cos01bnd 11637 cos1bnd 11638 sin01gt0 11640 cos01gt0 11641 sin02gt0 11642 sincos1sgn 11643 sincos2sgn 11644 cos12dec 11646 sin0pilem1 13062 sin0pilem2 13063 sinhalfpilem 13072 sincosq1lem 13106 coseq0negpitopi 13117 tangtx 13119 sincos4thpi 13121 pigt3 13125 |
Copyright terms: Public domain | W3C validator |