| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > elioc2 | Unicode version | ||
| Description: Membership in an open-below, closed-above real interval. (Contributed by Paul Chapman, 30-Dec-2007.) (Revised by Mario Carneiro, 14-Jun-2014.) |
| Ref | Expression |
|---|---|
| elioc2 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rexr 8091 |
. . 3
| |
| 2 | elioc1 10016 |
. . 3
| |
| 3 | 1, 2 | sylan2 286 |
. 2
|
| 4 | mnfxr 8102 |
. . . . . . . 8
| |
| 5 | 4 | a1i 9 |
. . . . . . 7
|
| 6 | simpll 527 |
. . . . . . 7
| |
| 7 | simpr1 1005 |
. . . . . . 7
| |
| 8 | mnfle 9886 |
. . . . . . . 8
| |
| 9 | 8 | ad2antrr 488 |
. . . . . . 7
|
| 10 | simpr2 1006 |
. . . . . . 7
| |
| 11 | 5, 6, 7, 9, 10 | xrlelttrd 9904 |
. . . . . 6
|
| 12 | 1 | ad2antlr 489 |
. . . . . . 7
|
| 13 | pnfxr 8098 |
. . . . . . . 8
| |
| 14 | 13 | a1i 9 |
. . . . . . 7
|
| 15 | simpr3 1007 |
. . . . . . 7
| |
| 16 | ltpnf 9874 |
. . . . . . . 8
| |
| 17 | 16 | ad2antlr 489 |
. . . . . . 7
|
| 18 | 7, 12, 14, 15, 17 | xrlelttrd 9904 |
. . . . . 6
|
| 19 | xrrebnd 9913 |
. . . . . . 7
| |
| 20 | 7, 19 | syl 14 |
. . . . . 6
|
| 21 | 11, 18, 20 | mpbir2and 946 |
. . . . 5
|
| 22 | 21, 10, 15 | 3jca 1179 |
. . . 4
|
| 23 | 22 | ex 115 |
. . 3
|
| 24 | rexr 8091 |
. . . 4
| |
| 25 | 24 | 3anim1i 1187 |
. . 3
|
| 26 | 23, 25 | impbid1 142 |
. 2
|
| 27 | 3, 26 | bitrd 188 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-pow 4208 ax-pr 4243 ax-un 4469 ax-setind 4574 ax-cnex 7989 ax-resscn 7990 ax-pre-ltirr 8010 ax-pre-ltwlin 8011 ax-pre-lttrn 8012 |
| This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-rab 2484 df-v 2765 df-sbc 2990 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-br 4035 df-opab 4096 df-id 4329 df-po 4332 df-iso 4333 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-iota 5220 df-fun 5261 df-fv 5267 df-ov 5928 df-oprab 5929 df-mpo 5930 df-pnf 8082 df-mnf 8083 df-xr 8084 df-ltxr 8085 df-le 8086 df-ioc 9987 |
| This theorem is referenced by: iocssre 10047 ef01bndlem 11940 sin01bnd 11941 cos01bnd 11942 cos1bnd 11943 sinltxirr 11945 sin01gt0 11946 cos01gt0 11947 sin02gt0 11948 sincos1sgn 11949 sincos2sgn 11950 cos12dec 11952 sin0pilem1 15125 sin0pilem2 15126 sinhalfpilem 15135 sincosq1lem 15169 coseq0negpitopi 15180 tangtx 15182 sincos4thpi 15184 pigt3 15188 |
| Copyright terms: Public domain | W3C validator |