| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > elioc2 | Unicode version | ||
| Description: Membership in an open-below, closed-above real interval. (Contributed by Paul Chapman, 30-Dec-2007.) (Revised by Mario Carneiro, 14-Jun-2014.) |
| Ref | Expression |
|---|---|
| elioc2 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rexr 8192 |
. . 3
| |
| 2 | elioc1 10118 |
. . 3
| |
| 3 | 1, 2 | sylan2 286 |
. 2
|
| 4 | mnfxr 8203 |
. . . . . . . 8
| |
| 5 | 4 | a1i 9 |
. . . . . . 7
|
| 6 | simpll 527 |
. . . . . . 7
| |
| 7 | simpr1 1027 |
. . . . . . 7
| |
| 8 | mnfle 9988 |
. . . . . . . 8
| |
| 9 | 8 | ad2antrr 488 |
. . . . . . 7
|
| 10 | simpr2 1028 |
. . . . . . 7
| |
| 11 | 5, 6, 7, 9, 10 | xrlelttrd 10006 |
. . . . . 6
|
| 12 | 1 | ad2antlr 489 |
. . . . . . 7
|
| 13 | pnfxr 8199 |
. . . . . . . 8
| |
| 14 | 13 | a1i 9 |
. . . . . . 7
|
| 15 | simpr3 1029 |
. . . . . . 7
| |
| 16 | ltpnf 9976 |
. . . . . . . 8
| |
| 17 | 16 | ad2antlr 489 |
. . . . . . 7
|
| 18 | 7, 12, 14, 15, 17 | xrlelttrd 10006 |
. . . . . 6
|
| 19 | xrrebnd 10015 |
. . . . . . 7
| |
| 20 | 7, 19 | syl 14 |
. . . . . 6
|
| 21 | 11, 18, 20 | mpbir2and 950 |
. . . . 5
|
| 22 | 21, 10, 15 | 3jca 1201 |
. . . 4
|
| 23 | 22 | ex 115 |
. . 3
|
| 24 | rexr 8192 |
. . . 4
| |
| 25 | 24 | 3anim1i 1209 |
. . 3
|
| 26 | 23, 25 | impbid1 142 |
. 2
|
| 27 | 3, 26 | bitrd 188 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-setind 4629 ax-cnex 8090 ax-resscn 8091 ax-pre-ltirr 8111 ax-pre-ltwlin 8112 ax-pre-lttrn 8113 |
| This theorem depends on definitions: df-bi 117 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-rab 2517 df-v 2801 df-sbc 3029 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-br 4084 df-opab 4146 df-id 4384 df-po 4387 df-iso 4388 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-iota 5278 df-fun 5320 df-fv 5326 df-ov 6004 df-oprab 6005 df-mpo 6006 df-pnf 8183 df-mnf 8184 df-xr 8185 df-ltxr 8186 df-le 8187 df-ioc 10089 |
| This theorem is referenced by: iocssre 10149 ef01bndlem 12267 sin01bnd 12268 cos01bnd 12269 cos1bnd 12270 sinltxirr 12272 sin01gt0 12273 cos01gt0 12274 sin02gt0 12275 sincos1sgn 12276 sincos2sgn 12277 cos12dec 12279 sin0pilem1 15455 sin0pilem2 15456 sinhalfpilem 15465 sincosq1lem 15499 coseq0negpitopi 15510 tangtx 15512 sincos4thpi 15514 pigt3 15518 |
| Copyright terms: Public domain | W3C validator |