Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > elioc2 | Unicode version |
Description: Membership in an open-below, closed-above real interval. (Contributed by Paul Chapman, 30-Dec-2007.) (Revised by Mario Carneiro, 14-Jun-2014.) |
Ref | Expression |
---|---|
elioc2 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rexr 7944 | . . 3 | |
2 | elioc1 9858 | . . 3 | |
3 | 1, 2 | sylan2 284 | . 2 |
4 | mnfxr 7955 | . . . . . . . 8 | |
5 | 4 | a1i 9 | . . . . . . 7 |
6 | simpll 519 | . . . . . . 7 | |
7 | simpr1 993 | . . . . . . 7 | |
8 | mnfle 9728 | . . . . . . . 8 | |
9 | 8 | ad2antrr 480 | . . . . . . 7 |
10 | simpr2 994 | . . . . . . 7 | |
11 | 5, 6, 7, 9, 10 | xrlelttrd 9746 | . . . . . 6 |
12 | 1 | ad2antlr 481 | . . . . . . 7 |
13 | pnfxr 7951 | . . . . . . . 8 | |
14 | 13 | a1i 9 | . . . . . . 7 |
15 | simpr3 995 | . . . . . . 7 | |
16 | ltpnf 9716 | . . . . . . . 8 | |
17 | 16 | ad2antlr 481 | . . . . . . 7 |
18 | 7, 12, 14, 15, 17 | xrlelttrd 9746 | . . . . . 6 |
19 | xrrebnd 9755 | . . . . . . 7 | |
20 | 7, 19 | syl 14 | . . . . . 6 |
21 | 11, 18, 20 | mpbir2and 934 | . . . . 5 |
22 | 21, 10, 15 | 3jca 1167 | . . . 4 |
23 | 22 | ex 114 | . . 3 |
24 | rexr 7944 | . . . 4 | |
25 | 24 | 3anim1i 1175 | . . 3 |
26 | 23, 25 | impbid1 141 | . 2 |
27 | 3, 26 | bitrd 187 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 w3a 968 wcel 2136 class class class wbr 3982 (class class class)co 5842 cr 7752 cpnf 7930 cmnf 7931 cxr 7932 clt 7933 cle 7934 cioc 9825 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 ax-un 4411 ax-setind 4514 ax-cnex 7844 ax-resscn 7845 ax-pre-ltirr 7865 ax-pre-ltwlin 7866 ax-pre-lttrn 7867 |
This theorem depends on definitions: df-bi 116 df-3or 969 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-nel 2432 df-ral 2449 df-rex 2450 df-rab 2453 df-v 2728 df-sbc 2952 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-br 3983 df-opab 4044 df-id 4271 df-po 4274 df-iso 4275 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-iota 5153 df-fun 5190 df-fv 5196 df-ov 5845 df-oprab 5846 df-mpo 5847 df-pnf 7935 df-mnf 7936 df-xr 7937 df-ltxr 7938 df-le 7939 df-ioc 9829 |
This theorem is referenced by: iocssre 9889 ef01bndlem 11697 sin01bnd 11698 cos01bnd 11699 cos1bnd 11700 sin01gt0 11702 cos01gt0 11703 sin02gt0 11704 sincos1sgn 11705 sincos2sgn 11706 cos12dec 11708 sin0pilem1 13342 sin0pilem2 13343 sinhalfpilem 13352 sincosq1lem 13386 coseq0negpitopi 13397 tangtx 13399 sincos4thpi 13401 pigt3 13405 |
Copyright terms: Public domain | W3C validator |