Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > elioc2 | Unicode version |
Description: Membership in an open-below, closed-above real interval. (Contributed by Paul Chapman, 30-Dec-2007.) (Revised by Mario Carneiro, 14-Jun-2014.) |
Ref | Expression |
---|---|
elioc2 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rexr 7965 | . . 3 | |
2 | elioc1 9879 | . . 3 | |
3 | 1, 2 | sylan2 284 | . 2 |
4 | mnfxr 7976 | . . . . . . . 8 | |
5 | 4 | a1i 9 | . . . . . . 7 |
6 | simpll 524 | . . . . . . 7 | |
7 | simpr1 998 | . . . . . . 7 | |
8 | mnfle 9749 | . . . . . . . 8 | |
9 | 8 | ad2antrr 485 | . . . . . . 7 |
10 | simpr2 999 | . . . . . . 7 | |
11 | 5, 6, 7, 9, 10 | xrlelttrd 9767 | . . . . . 6 |
12 | 1 | ad2antlr 486 | . . . . . . 7 |
13 | pnfxr 7972 | . . . . . . . 8 | |
14 | 13 | a1i 9 | . . . . . . 7 |
15 | simpr3 1000 | . . . . . . 7 | |
16 | ltpnf 9737 | . . . . . . . 8 | |
17 | 16 | ad2antlr 486 | . . . . . . 7 |
18 | 7, 12, 14, 15, 17 | xrlelttrd 9767 | . . . . . 6 |
19 | xrrebnd 9776 | . . . . . . 7 | |
20 | 7, 19 | syl 14 | . . . . . 6 |
21 | 11, 18, 20 | mpbir2and 939 | . . . . 5 |
22 | 21, 10, 15 | 3jca 1172 | . . . 4 |
23 | 22 | ex 114 | . . 3 |
24 | rexr 7965 | . . . 4 | |
25 | 24 | 3anim1i 1180 | . . 3 |
26 | 23, 25 | impbid1 141 | . 2 |
27 | 3, 26 | bitrd 187 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 w3a 973 wcel 2141 class class class wbr 3989 (class class class)co 5853 cr 7773 cpnf 7951 cmnf 7952 cxr 7953 clt 7954 cle 7955 cioc 9846 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 ax-pr 4194 ax-un 4418 ax-setind 4521 ax-cnex 7865 ax-resscn 7866 ax-pre-ltirr 7886 ax-pre-ltwlin 7887 ax-pre-lttrn 7888 |
This theorem depends on definitions: df-bi 116 df-3or 974 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-nel 2436 df-ral 2453 df-rex 2454 df-rab 2457 df-v 2732 df-sbc 2956 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-br 3990 df-opab 4051 df-id 4278 df-po 4281 df-iso 4282 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-iota 5160 df-fun 5200 df-fv 5206 df-ov 5856 df-oprab 5857 df-mpo 5858 df-pnf 7956 df-mnf 7957 df-xr 7958 df-ltxr 7959 df-le 7960 df-ioc 9850 |
This theorem is referenced by: iocssre 9910 ef01bndlem 11719 sin01bnd 11720 cos01bnd 11721 cos1bnd 11722 sin01gt0 11724 cos01gt0 11725 sin02gt0 11726 sincos1sgn 11727 sincos2sgn 11728 cos12dec 11730 sin0pilem1 13496 sin0pilem2 13497 sinhalfpilem 13506 sincosq1lem 13540 coseq0negpitopi 13551 tangtx 13553 sincos4thpi 13555 pigt3 13559 |
Copyright terms: Public domain | W3C validator |