ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  oppr0g Unicode version

Theorem oppr0g 13958
Description: Additive identity of an opposite ring. (Contributed by Mario Carneiro, 1-Dec-2014.)
Hypotheses
Ref Expression
opprbas.1  |-  O  =  (oppr
`  R )
oppr0.2  |-  .0.  =  ( 0g `  R )
Assertion
Ref Expression
oppr0g  |-  ( R  e.  V  ->  .0.  =  ( 0g `  O ) )

Proof of Theorem oppr0g
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 opprbas.1 . . . . . 6  |-  O  =  (oppr
`  R )
2 eqid 2207 . . . . . 6  |-  ( Base `  R )  =  (
Base `  R )
31, 2opprbasg 13952 . . . . 5  |-  ( R  e.  V  ->  ( Base `  R )  =  ( Base `  O
) )
43eleq2d 2277 . . . 4  |-  ( R  e.  V  ->  (
y  e.  ( Base `  R )  <->  y  e.  ( Base `  O )
) )
5 eqid 2207 . . . . . . . . 9  |-  ( +g  `  R )  =  ( +g  `  R )
61, 5oppraddg 13953 . . . . . . . 8  |-  ( R  e.  V  ->  ( +g  `  R )  =  ( +g  `  O
) )
76oveqd 5984 . . . . . . 7  |-  ( R  e.  V  ->  (
y ( +g  `  R
) x )  =  ( y ( +g  `  O ) x ) )
87eqeq1d 2216 . . . . . 6  |-  ( R  e.  V  ->  (
( y ( +g  `  R ) x )  =  x  <->  ( y
( +g  `  O ) x )  =  x ) )
96oveqd 5984 . . . . . . 7  |-  ( R  e.  V  ->  (
x ( +g  `  R
) y )  =  ( x ( +g  `  O ) y ) )
109eqeq1d 2216 . . . . . 6  |-  ( R  e.  V  ->  (
( x ( +g  `  R ) y )  =  x  <->  ( x
( +g  `  O ) y )  =  x ) )
118, 10anbi12d 473 . . . . 5  |-  ( R  e.  V  ->  (
( ( y ( +g  `  R ) x )  =  x  /\  ( x ( +g  `  R ) y )  =  x )  <->  ( ( y ( +g  `  O
) x )  =  x  /\  ( x ( +g  `  O
) y )  =  x ) ) )
123, 11raleqbidv 2721 . . . 4  |-  ( R  e.  V  ->  ( A. x  e.  ( Base `  R ) ( ( y ( +g  `  R ) x )  =  x  /\  (
x ( +g  `  R
) y )  =  x )  <->  A. x  e.  ( Base `  O
) ( ( y ( +g  `  O
) x )  =  x  /\  ( x ( +g  `  O
) y )  =  x ) ) )
134, 12anbi12d 473 . . 3  |-  ( R  e.  V  ->  (
( y  e.  (
Base `  R )  /\  A. x  e.  (
Base `  R )
( ( y ( +g  `  R ) x )  =  x  /\  ( x ( +g  `  R ) y )  =  x ) )  <->  ( y  e.  ( Base `  O
)  /\  A. x  e.  ( Base `  O
) ( ( y ( +g  `  O
) x )  =  x  /\  ( x ( +g  `  O
) y )  =  x ) ) ) )
1413iotabidv 5273 . 2  |-  ( R  e.  V  ->  ( iota y ( y  e.  ( Base `  R
)  /\  A. x  e.  ( Base `  R
) ( ( y ( +g  `  R
) x )  =  x  /\  ( x ( +g  `  R
) y )  =  x ) ) )  =  ( iota y
( y  e.  (
Base `  O )  /\  A. x  e.  (
Base `  O )
( ( y ( +g  `  O ) x )  =  x  /\  ( x ( +g  `  O ) y )  =  x ) ) ) )
15 oppr0.2 . . 3  |-  .0.  =  ( 0g `  R )
162, 5, 15grpidvalg 13320 . 2  |-  ( R  e.  V  ->  .0.  =  ( iota y
( y  e.  (
Base `  R )  /\  A. x  e.  (
Base `  R )
( ( y ( +g  `  R ) x )  =  x  /\  ( x ( +g  `  R ) y )  =  x ) ) ) )
171opprex 13950 . . 3  |-  ( R  e.  V  ->  O  e.  _V )
18 eqid 2207 . . . 4  |-  ( Base `  O )  =  (
Base `  O )
19 eqid 2207 . . . 4  |-  ( +g  `  O )  =  ( +g  `  O )
20 eqid 2207 . . . 4  |-  ( 0g
`  O )  =  ( 0g `  O
)
2118, 19, 20grpidvalg 13320 . . 3  |-  ( O  e.  _V  ->  ( 0g `  O )  =  ( iota y ( y  e.  ( Base `  O )  /\  A. x  e.  ( Base `  O ) ( ( y ( +g  `  O
) x )  =  x  /\  ( x ( +g  `  O
) y )  =  x ) ) ) )
2217, 21syl 14 . 2  |-  ( R  e.  V  ->  ( 0g `  O )  =  ( iota y ( y  e.  ( Base `  O )  /\  A. x  e.  ( Base `  O ) ( ( y ( +g  `  O
) x )  =  x  /\  ( x ( +g  `  O
) y )  =  x ) ) ) )
2314, 16, 223eqtr4d 2250 1  |-  ( R  e.  V  ->  .0.  =  ( 0g `  O ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1373    e. wcel 2178   A.wral 2486   _Vcvv 2776   iotacio 5249   ` cfv 5290  (class class class)co 5967   Basecbs 12947   +g cplusg 13024   0gc0g 13203  opprcoppr 13944
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-sep 4178  ax-nul 4186  ax-pow 4234  ax-pr 4269  ax-un 4498  ax-setind 4603  ax-cnex 8051  ax-resscn 8052  ax-1cn 8053  ax-1re 8054  ax-icn 8055  ax-addcl 8056  ax-addrcl 8057  ax-mulcl 8058  ax-addcom 8060  ax-addass 8062  ax-i2m1 8065  ax-0lt1 8066  ax-0id 8068  ax-rnegex 8069  ax-pre-ltirr 8072  ax-pre-lttrn 8074  ax-pre-ltadd 8076
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-nel 2474  df-ral 2491  df-rex 2492  df-rab 2495  df-v 2778  df-sbc 3006  df-csb 3102  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-nul 3469  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-int 3900  df-br 4060  df-opab 4122  df-mpt 4123  df-id 4358  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-res 4705  df-ima 4706  df-iota 5251  df-fun 5292  df-fn 5293  df-fv 5298  df-riota 5922  df-ov 5970  df-oprab 5971  df-mpo 5972  df-tpos 6354  df-pnf 8144  df-mnf 8145  df-ltxr 8147  df-inn 9072  df-2 9130  df-3 9131  df-ndx 12950  df-slot 12951  df-base 12953  df-sets 12954  df-plusg 13037  df-mulr 13038  df-0g 13205  df-oppr 13945
This theorem is referenced by:  opprnegg  13960  opprnzrbg  14062  opprdomnbg  14151  ridl0  14387  2idlcpblrng  14400
  Copyright terms: Public domain W3C validator