ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  oppr0g Unicode version

Theorem oppr0g 13204
Description: Additive identity of an opposite ring. (Contributed by Mario Carneiro, 1-Dec-2014.)
Hypotheses
Ref Expression
opprbas.1  |-  O  =  (oppr
`  R )
oppr0.2  |-  .0.  =  ( 0g `  R )
Assertion
Ref Expression
oppr0g  |-  ( R  e.  V  ->  .0.  =  ( 0g `  O ) )

Proof of Theorem oppr0g
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 opprbas.1 . . . . . 6  |-  O  =  (oppr
`  R )
2 eqid 2177 . . . . . 6  |-  ( Base `  R )  =  (
Base `  R )
31, 2opprbasg 13200 . . . . 5  |-  ( R  e.  V  ->  ( Base `  R )  =  ( Base `  O
) )
43eleq2d 2247 . . . 4  |-  ( R  e.  V  ->  (
y  e.  ( Base `  R )  <->  y  e.  ( Base `  O )
) )
5 eqid 2177 . . . . . . . . 9  |-  ( +g  `  R )  =  ( +g  `  R )
61, 5oppraddg 13201 . . . . . . . 8  |-  ( R  e.  V  ->  ( +g  `  R )  =  ( +g  `  O
) )
76oveqd 5891 . . . . . . 7  |-  ( R  e.  V  ->  (
y ( +g  `  R
) x )  =  ( y ( +g  `  O ) x ) )
87eqeq1d 2186 . . . . . 6  |-  ( R  e.  V  ->  (
( y ( +g  `  R ) x )  =  x  <->  ( y
( +g  `  O ) x )  =  x ) )
96oveqd 5891 . . . . . . 7  |-  ( R  e.  V  ->  (
x ( +g  `  R
) y )  =  ( x ( +g  `  O ) y ) )
109eqeq1d 2186 . . . . . 6  |-  ( R  e.  V  ->  (
( x ( +g  `  R ) y )  =  x  <->  ( x
( +g  `  O ) y )  =  x ) )
118, 10anbi12d 473 . . . . 5  |-  ( R  e.  V  ->  (
( ( y ( +g  `  R ) x )  =  x  /\  ( x ( +g  `  R ) y )  =  x )  <->  ( ( y ( +g  `  O
) x )  =  x  /\  ( x ( +g  `  O
) y )  =  x ) ) )
123, 11raleqbidv 2684 . . . 4  |-  ( R  e.  V  ->  ( A. x  e.  ( Base `  R ) ( ( y ( +g  `  R ) x )  =  x  /\  (
x ( +g  `  R
) y )  =  x )  <->  A. x  e.  ( Base `  O
) ( ( y ( +g  `  O
) x )  =  x  /\  ( x ( +g  `  O
) y )  =  x ) ) )
134, 12anbi12d 473 . . 3  |-  ( R  e.  V  ->  (
( y  e.  (
Base `  R )  /\  A. x  e.  (
Base `  R )
( ( y ( +g  `  R ) x )  =  x  /\  ( x ( +g  `  R ) y )  =  x ) )  <->  ( y  e.  ( Base `  O
)  /\  A. x  e.  ( Base `  O
) ( ( y ( +g  `  O
) x )  =  x  /\  ( x ( +g  `  O
) y )  =  x ) ) ) )
1413iotabidv 5199 . 2  |-  ( R  e.  V  ->  ( iota y ( y  e.  ( Base `  R
)  /\  A. x  e.  ( Base `  R
) ( ( y ( +g  `  R
) x )  =  x  /\  ( x ( +g  `  R
) y )  =  x ) ) )  =  ( iota y
( y  e.  (
Base `  O )  /\  A. x  e.  (
Base `  O )
( ( y ( +g  `  O ) x )  =  x  /\  ( x ( +g  `  O ) y )  =  x ) ) ) )
15 oppr0.2 . . 3  |-  .0.  =  ( 0g `  R )
162, 5, 15grpidvalg 12746 . 2  |-  ( R  e.  V  ->  .0.  =  ( iota y
( y  e.  (
Base `  R )  /\  A. x  e.  (
Base `  R )
( ( y ( +g  `  R ) x )  =  x  /\  ( x ( +g  `  R ) y )  =  x ) ) ) )
171opprex 13198 . . 3  |-  ( R  e.  V  ->  O  e.  _V )
18 eqid 2177 . . . 4  |-  ( Base `  O )  =  (
Base `  O )
19 eqid 2177 . . . 4  |-  ( +g  `  O )  =  ( +g  `  O )
20 eqid 2177 . . . 4  |-  ( 0g
`  O )  =  ( 0g `  O
)
2118, 19, 20grpidvalg 12746 . . 3  |-  ( O  e.  _V  ->  ( 0g `  O )  =  ( iota y ( y  e.  ( Base `  O )  /\  A. x  e.  ( Base `  O ) ( ( y ( +g  `  O
) x )  =  x  /\  ( x ( +g  `  O
) y )  =  x ) ) ) )
2217, 21syl 14 . 2  |-  ( R  e.  V  ->  ( 0g `  O )  =  ( iota y ( y  e.  ( Base `  O )  /\  A. x  e.  ( Base `  O ) ( ( y ( +g  `  O
) x )  =  x  /\  ( x ( +g  `  O
) y )  =  x ) ) ) )
2314, 16, 223eqtr4d 2220 1  |-  ( R  e.  V  ->  .0.  =  ( 0g `  O ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1353    e. wcel 2148   A.wral 2455   _Vcvv 2737   iotacio 5176   ` cfv 5216  (class class class)co 5874   Basecbs 12456   +g cplusg 12530   0gc0g 12695  opprcoppr 13192
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4121  ax-nul 4129  ax-pow 4174  ax-pr 4209  ax-un 4433  ax-setind 4536  ax-cnex 7901  ax-resscn 7902  ax-1cn 7903  ax-1re 7904  ax-icn 7905  ax-addcl 7906  ax-addrcl 7907  ax-mulcl 7908  ax-addcom 7910  ax-addass 7912  ax-i2m1 7915  ax-0lt1 7916  ax-0id 7918  ax-rnegex 7919  ax-pre-ltirr 7922  ax-pre-lttrn 7924  ax-pre-ltadd 7926
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-rab 2464  df-v 2739  df-sbc 2963  df-csb 3058  df-dif 3131  df-un 3133  df-in 3135  df-ss 3142  df-nul 3423  df-pw 3577  df-sn 3598  df-pr 3599  df-op 3601  df-uni 3810  df-int 3845  df-br 4004  df-opab 4065  df-mpt 4066  df-id 4293  df-xp 4632  df-rel 4633  df-cnv 4634  df-co 4635  df-dm 4636  df-rn 4637  df-res 4638  df-ima 4639  df-iota 5178  df-fun 5218  df-fn 5219  df-fv 5224  df-riota 5830  df-ov 5877  df-oprab 5878  df-mpo 5879  df-tpos 6245  df-pnf 7992  df-mnf 7993  df-ltxr 7995  df-inn 8918  df-2 8976  df-3 8977  df-ndx 12459  df-slot 12460  df-base 12462  df-sets 12463  df-plusg 12543  df-mulr 12544  df-0g 12697  df-oppr 13193
This theorem is referenced by:  opprnegg  13206
  Copyright terms: Public domain W3C validator