ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dfur2g Unicode version

Theorem dfur2g 13461
Description: The multiplicative identity is the unique element of the ring that is left- and right-neutral on all elements under multiplication. (Contributed by Mario Carneiro, 10-Jan-2015.)
Hypotheses
Ref Expression
dfur2.b  |-  B  =  ( Base `  R
)
dfur2.t  |-  .x.  =  ( .r `  R )
dfur2.u  |-  .1.  =  ( 1r `  R )
Assertion
Ref Expression
dfur2g  |-  ( R  e.  V  ->  .1.  =  ( iota e
( e  e.  B  /\  A. x  e.  B  ( ( e  .x.  x )  =  x  /\  ( x  .x.  e )  =  x ) ) ) )
Distinct variable groups:    x, e, B    R, e, x    e, V, x
Allowed substitution hints:    .x. ( x, e)    .1. (
x, e)

Proof of Theorem dfur2g
StepHypRef Expression
1 fnmgp 13421 . . . 4  |- mulGrp  Fn  _V
2 elex 2771 . . . 4  |-  ( R  e.  V  ->  R  e.  _V )
3 funfvex 5572 . . . . 5  |-  ( ( Fun mulGrp  /\  R  e.  dom mulGrp )  ->  (mulGrp `  R )  e.  _V )
43funfni 5355 . . . 4  |-  ( (mulGrp 
Fn  _V  /\  R  e. 
_V )  ->  (mulGrp `  R )  e.  _V )
51, 2, 4sylancr 414 . . 3  |-  ( R  e.  V  ->  (mulGrp `  R )  e.  _V )
6 eqid 2193 . . . 4  |-  ( Base `  (mulGrp `  R )
)  =  ( Base `  (mulGrp `  R )
)
7 eqid 2193 . . . 4  |-  ( +g  `  (mulGrp `  R )
)  =  ( +g  `  (mulGrp `  R )
)
8 eqid 2193 . . . 4  |-  ( 0g
`  (mulGrp `  R )
)  =  ( 0g
`  (mulGrp `  R )
)
96, 7, 8grpidvalg 12959 . . 3  |-  ( (mulGrp `  R )  e.  _V  ->  ( 0g `  (mulGrp `  R ) )  =  ( iota e ( e  e.  ( Base `  (mulGrp `  R )
)  /\  A. x  e.  ( Base `  (mulGrp `  R ) ) ( ( e ( +g  `  (mulGrp `  R )
) x )  =  x  /\  ( x ( +g  `  (mulGrp `  R ) ) e )  =  x ) ) ) )
105, 9syl 14 . 2  |-  ( R  e.  V  ->  ( 0g `  (mulGrp `  R
) )  =  ( iota e ( e  e.  ( Base `  (mulGrp `  R ) )  /\  A. x  e.  ( Base `  (mulGrp `  R )
) ( ( e ( +g  `  (mulGrp `  R ) ) x )  =  x  /\  ( x ( +g  `  (mulGrp `  R )
) e )  =  x ) ) ) )
11 eqid 2193 . . 3  |-  (mulGrp `  R )  =  (mulGrp `  R )
12 dfur2.u . . 3  |-  .1.  =  ( 1r `  R )
1311, 12ringidvalg 13460 . 2  |-  ( R  e.  V  ->  .1.  =  ( 0g `  (mulGrp `  R ) ) )
14 dfur2.b . . . . . 6  |-  B  =  ( Base `  R
)
1511, 14mgpbasg 13425 . . . . 5  |-  ( R  e.  V  ->  B  =  ( Base `  (mulGrp `  R ) ) )
1615eleq2d 2263 . . . 4  |-  ( R  e.  V  ->  (
e  e.  B  <->  e  e.  ( Base `  (mulGrp `  R
) ) ) )
17 dfur2.t . . . . . . . . 9  |-  .x.  =  ( .r `  R )
1811, 17mgpplusgg 13423 . . . . . . . 8  |-  ( R  e.  V  ->  .x.  =  ( +g  `  (mulGrp `  R ) ) )
1918oveqd 5936 . . . . . . 7  |-  ( R  e.  V  ->  (
e  .x.  x )  =  ( e ( +g  `  (mulGrp `  R ) ) x ) )
2019eqeq1d 2202 . . . . . 6  |-  ( R  e.  V  ->  (
( e  .x.  x
)  =  x  <->  ( e
( +g  `  (mulGrp `  R ) ) x )  =  x ) )
2118oveqd 5936 . . . . . . 7  |-  ( R  e.  V  ->  (
x  .x.  e )  =  ( x ( +g  `  (mulGrp `  R ) ) e ) )
2221eqeq1d 2202 . . . . . 6  |-  ( R  e.  V  ->  (
( x  .x.  e
)  =  x  <->  ( x
( +g  `  (mulGrp `  R ) ) e )  =  x ) )
2320, 22anbi12d 473 . . . . 5  |-  ( R  e.  V  ->  (
( ( e  .x.  x )  =  x  /\  ( x  .x.  e )  =  x )  <->  ( ( e ( +g  `  (mulGrp `  R ) ) x )  =  x  /\  ( x ( +g  `  (mulGrp `  R )
) e )  =  x ) ) )
2415, 23raleqbidv 2706 . . . 4  |-  ( R  e.  V  ->  ( A. x  e.  B  ( ( e  .x.  x )  =  x  /\  ( x  .x.  e )  =  x )  <->  A. x  e.  (
Base `  (mulGrp `  R
) ) ( ( e ( +g  `  (mulGrp `  R ) ) x )  =  x  /\  ( x ( +g  `  (mulGrp `  R )
) e )  =  x ) ) )
2516, 24anbi12d 473 . . 3  |-  ( R  e.  V  ->  (
( e  e.  B  /\  A. x  e.  B  ( ( e  .x.  x )  =  x  /\  ( x  .x.  e )  =  x ) )  <->  ( e  e.  ( Base `  (mulGrp `  R ) )  /\  A. x  e.  ( Base `  (mulGrp `  R )
) ( ( e ( +g  `  (mulGrp `  R ) ) x )  =  x  /\  ( x ( +g  `  (mulGrp `  R )
) e )  =  x ) ) ) )
2625iotabidv 5238 . 2  |-  ( R  e.  V  ->  ( iota e ( e  e.  B  /\  A. x  e.  B  ( (
e  .x.  x )  =  x  /\  (
x  .x.  e )  =  x ) ) )  =  ( iota e
( e  e.  (
Base `  (mulGrp `  R
) )  /\  A. x  e.  ( Base `  (mulGrp `  R )
) ( ( e ( +g  `  (mulGrp `  R ) ) x )  =  x  /\  ( x ( +g  `  (mulGrp `  R )
) e )  =  x ) ) ) )
2710, 13, 263eqtr4d 2236 1  |-  ( R  e.  V  ->  .1.  =  ( iota e
( e  e.  B  /\  A. x  e.  B  ( ( e  .x.  x )  =  x  /\  ( x  .x.  e )  =  x ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1364    e. wcel 2164   A.wral 2472   _Vcvv 2760   iotacio 5214    Fn wfn 5250   ` cfv 5255  (class class class)co 5919   Basecbs 12621   +g cplusg 12698   .rcmulr 12699   0gc0g 12870  mulGrpcmgp 13419   1rcur 13458
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4148  ax-pow 4204  ax-pr 4239  ax-un 4465  ax-setind 4570  ax-cnex 7965  ax-resscn 7966  ax-1cn 7967  ax-1re 7968  ax-icn 7969  ax-addcl 7970  ax-addrcl 7971  ax-mulcl 7972  ax-addcom 7974  ax-addass 7976  ax-i2m1 7979  ax-0lt1 7980  ax-0id 7982  ax-rnegex 7983  ax-pre-ltirr 7986  ax-pre-ltadd 7990
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-rab 2481  df-v 2762  df-sbc 2987  df-csb 3082  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-nul 3448  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-int 3872  df-br 4031  df-opab 4092  df-mpt 4093  df-id 4325  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-ima 4673  df-iota 5216  df-fun 5257  df-fn 5258  df-fv 5263  df-riota 5874  df-ov 5922  df-oprab 5923  df-mpo 5924  df-pnf 8058  df-mnf 8059  df-ltxr 8061  df-inn 8985  df-2 9043  df-3 9044  df-ndx 12624  df-slot 12625  df-base 12627  df-sets 12628  df-plusg 12711  df-mulr 12712  df-0g 12872  df-mgp 13420  df-ur 13459
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator