ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dfur2g Unicode version

Theorem dfur2g 13724
Description: The multiplicative identity is the unique element of the ring that is left- and right-neutral on all elements under multiplication. (Contributed by Mario Carneiro, 10-Jan-2015.)
Hypotheses
Ref Expression
dfur2.b  |-  B  =  ( Base `  R
)
dfur2.t  |-  .x.  =  ( .r `  R )
dfur2.u  |-  .1.  =  ( 1r `  R )
Assertion
Ref Expression
dfur2g  |-  ( R  e.  V  ->  .1.  =  ( iota e
( e  e.  B  /\  A. x  e.  B  ( ( e  .x.  x )  =  x  /\  ( x  .x.  e )  =  x ) ) ) )
Distinct variable groups:    x, e, B    R, e, x    e, V, x
Allowed substitution hints:    .x. ( x, e)    .1. (
x, e)

Proof of Theorem dfur2g
StepHypRef Expression
1 fnmgp 13684 . . . 4  |- mulGrp  Fn  _V
2 elex 2783 . . . 4  |-  ( R  e.  V  ->  R  e.  _V )
3 funfvex 5593 . . . . 5  |-  ( ( Fun mulGrp  /\  R  e.  dom mulGrp )  ->  (mulGrp `  R )  e.  _V )
43funfni 5376 . . . 4  |-  ( (mulGrp 
Fn  _V  /\  R  e. 
_V )  ->  (mulGrp `  R )  e.  _V )
51, 2, 4sylancr 414 . . 3  |-  ( R  e.  V  ->  (mulGrp `  R )  e.  _V )
6 eqid 2205 . . . 4  |-  ( Base `  (mulGrp `  R )
)  =  ( Base `  (mulGrp `  R )
)
7 eqid 2205 . . . 4  |-  ( +g  `  (mulGrp `  R )
)  =  ( +g  `  (mulGrp `  R )
)
8 eqid 2205 . . . 4  |-  ( 0g
`  (mulGrp `  R )
)  =  ( 0g
`  (mulGrp `  R )
)
96, 7, 8grpidvalg 13205 . . 3  |-  ( (mulGrp `  R )  e.  _V  ->  ( 0g `  (mulGrp `  R ) )  =  ( iota e ( e  e.  ( Base `  (mulGrp `  R )
)  /\  A. x  e.  ( Base `  (mulGrp `  R ) ) ( ( e ( +g  `  (mulGrp `  R )
) x )  =  x  /\  ( x ( +g  `  (mulGrp `  R ) ) e )  =  x ) ) ) )
105, 9syl 14 . 2  |-  ( R  e.  V  ->  ( 0g `  (mulGrp `  R
) )  =  ( iota e ( e  e.  ( Base `  (mulGrp `  R ) )  /\  A. x  e.  ( Base `  (mulGrp `  R )
) ( ( e ( +g  `  (mulGrp `  R ) ) x )  =  x  /\  ( x ( +g  `  (mulGrp `  R )
) e )  =  x ) ) ) )
11 eqid 2205 . . 3  |-  (mulGrp `  R )  =  (mulGrp `  R )
12 dfur2.u . . 3  |-  .1.  =  ( 1r `  R )
1311, 12ringidvalg 13723 . 2  |-  ( R  e.  V  ->  .1.  =  ( 0g `  (mulGrp `  R ) ) )
14 dfur2.b . . . . . 6  |-  B  =  ( Base `  R
)
1511, 14mgpbasg 13688 . . . . 5  |-  ( R  e.  V  ->  B  =  ( Base `  (mulGrp `  R ) ) )
1615eleq2d 2275 . . . 4  |-  ( R  e.  V  ->  (
e  e.  B  <->  e  e.  ( Base `  (mulGrp `  R
) ) ) )
17 dfur2.t . . . . . . . . 9  |-  .x.  =  ( .r `  R )
1811, 17mgpplusgg 13686 . . . . . . . 8  |-  ( R  e.  V  ->  .x.  =  ( +g  `  (mulGrp `  R ) ) )
1918oveqd 5961 . . . . . . 7  |-  ( R  e.  V  ->  (
e  .x.  x )  =  ( e ( +g  `  (mulGrp `  R ) ) x ) )
2019eqeq1d 2214 . . . . . 6  |-  ( R  e.  V  ->  (
( e  .x.  x
)  =  x  <->  ( e
( +g  `  (mulGrp `  R ) ) x )  =  x ) )
2118oveqd 5961 . . . . . . 7  |-  ( R  e.  V  ->  (
x  .x.  e )  =  ( x ( +g  `  (mulGrp `  R ) ) e ) )
2221eqeq1d 2214 . . . . . 6  |-  ( R  e.  V  ->  (
( x  .x.  e
)  =  x  <->  ( x
( +g  `  (mulGrp `  R ) ) e )  =  x ) )
2320, 22anbi12d 473 . . . . 5  |-  ( R  e.  V  ->  (
( ( e  .x.  x )  =  x  /\  ( x  .x.  e )  =  x )  <->  ( ( e ( +g  `  (mulGrp `  R ) ) x )  =  x  /\  ( x ( +g  `  (mulGrp `  R )
) e )  =  x ) ) )
2415, 23raleqbidv 2718 . . . 4  |-  ( R  e.  V  ->  ( A. x  e.  B  ( ( e  .x.  x )  =  x  /\  ( x  .x.  e )  =  x )  <->  A. x  e.  (
Base `  (mulGrp `  R
) ) ( ( e ( +g  `  (mulGrp `  R ) ) x )  =  x  /\  ( x ( +g  `  (mulGrp `  R )
) e )  =  x ) ) )
2516, 24anbi12d 473 . . 3  |-  ( R  e.  V  ->  (
( e  e.  B  /\  A. x  e.  B  ( ( e  .x.  x )  =  x  /\  ( x  .x.  e )  =  x ) )  <->  ( e  e.  ( Base `  (mulGrp `  R ) )  /\  A. x  e.  ( Base `  (mulGrp `  R )
) ( ( e ( +g  `  (mulGrp `  R ) ) x )  =  x  /\  ( x ( +g  `  (mulGrp `  R )
) e )  =  x ) ) ) )
2625iotabidv 5254 . 2  |-  ( R  e.  V  ->  ( iota e ( e  e.  B  /\  A. x  e.  B  ( (
e  .x.  x )  =  x  /\  (
x  .x.  e )  =  x ) ) )  =  ( iota e
( e  e.  (
Base `  (mulGrp `  R
) )  /\  A. x  e.  ( Base `  (mulGrp `  R )
) ( ( e ( +g  `  (mulGrp `  R ) ) x )  =  x  /\  ( x ( +g  `  (mulGrp `  R )
) e )  =  x ) ) ) )
2710, 13, 263eqtr4d 2248 1  |-  ( R  e.  V  ->  .1.  =  ( iota e
( e  e.  B  /\  A. x  e.  B  ( ( e  .x.  x )  =  x  /\  ( x  .x.  e )  =  x ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1373    e. wcel 2176   A.wral 2484   _Vcvv 2772   iotacio 5230    Fn wfn 5266   ` cfv 5271  (class class class)co 5944   Basecbs 12832   +g cplusg 12909   .rcmulr 12910   0gc0g 13088  mulGrpcmgp 13682   1rcur 13721
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-sep 4162  ax-pow 4218  ax-pr 4253  ax-un 4480  ax-setind 4585  ax-cnex 8016  ax-resscn 8017  ax-1cn 8018  ax-1re 8019  ax-icn 8020  ax-addcl 8021  ax-addrcl 8022  ax-mulcl 8023  ax-addcom 8025  ax-addass 8027  ax-i2m1 8030  ax-0lt1 8031  ax-0id 8033  ax-rnegex 8034  ax-pre-ltirr 8037  ax-pre-ltadd 8041
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-nel 2472  df-ral 2489  df-rex 2490  df-rab 2493  df-v 2774  df-sbc 2999  df-csb 3094  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3461  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-int 3886  df-br 4045  df-opab 4106  df-mpt 4107  df-id 4340  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-rn 4686  df-res 4687  df-ima 4688  df-iota 5232  df-fun 5273  df-fn 5274  df-fv 5279  df-riota 5899  df-ov 5947  df-oprab 5948  df-mpo 5949  df-pnf 8109  df-mnf 8110  df-ltxr 8112  df-inn 9037  df-2 9095  df-3 9096  df-ndx 12835  df-slot 12836  df-base 12838  df-sets 12839  df-plusg 12922  df-mulr 12923  df-0g 13090  df-mgp 13683  df-ur 13722
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator