ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dfur2g Unicode version

Theorem dfur2g 13518
Description: The multiplicative identity is the unique element of the ring that is left- and right-neutral on all elements under multiplication. (Contributed by Mario Carneiro, 10-Jan-2015.)
Hypotheses
Ref Expression
dfur2.b  |-  B  =  ( Base `  R
)
dfur2.t  |-  .x.  =  ( .r `  R )
dfur2.u  |-  .1.  =  ( 1r `  R )
Assertion
Ref Expression
dfur2g  |-  ( R  e.  V  ->  .1.  =  ( iota e
( e  e.  B  /\  A. x  e.  B  ( ( e  .x.  x )  =  x  /\  ( x  .x.  e )  =  x ) ) ) )
Distinct variable groups:    x, e, B    R, e, x    e, V, x
Allowed substitution hints:    .x. ( x, e)    .1. (
x, e)

Proof of Theorem dfur2g
StepHypRef Expression
1 fnmgp 13478 . . . 4  |- mulGrp  Fn  _V
2 elex 2774 . . . 4  |-  ( R  e.  V  ->  R  e.  _V )
3 funfvex 5575 . . . . 5  |-  ( ( Fun mulGrp  /\  R  e.  dom mulGrp )  ->  (mulGrp `  R )  e.  _V )
43funfni 5358 . . . 4  |-  ( (mulGrp 
Fn  _V  /\  R  e. 
_V )  ->  (mulGrp `  R )  e.  _V )
51, 2, 4sylancr 414 . . 3  |-  ( R  e.  V  ->  (mulGrp `  R )  e.  _V )
6 eqid 2196 . . . 4  |-  ( Base `  (mulGrp `  R )
)  =  ( Base `  (mulGrp `  R )
)
7 eqid 2196 . . . 4  |-  ( +g  `  (mulGrp `  R )
)  =  ( +g  `  (mulGrp `  R )
)
8 eqid 2196 . . . 4  |-  ( 0g
`  (mulGrp `  R )
)  =  ( 0g
`  (mulGrp `  R )
)
96, 7, 8grpidvalg 13016 . . 3  |-  ( (mulGrp `  R )  e.  _V  ->  ( 0g `  (mulGrp `  R ) )  =  ( iota e ( e  e.  ( Base `  (mulGrp `  R )
)  /\  A. x  e.  ( Base `  (mulGrp `  R ) ) ( ( e ( +g  `  (mulGrp `  R )
) x )  =  x  /\  ( x ( +g  `  (mulGrp `  R ) ) e )  =  x ) ) ) )
105, 9syl 14 . 2  |-  ( R  e.  V  ->  ( 0g `  (mulGrp `  R
) )  =  ( iota e ( e  e.  ( Base `  (mulGrp `  R ) )  /\  A. x  e.  ( Base `  (mulGrp `  R )
) ( ( e ( +g  `  (mulGrp `  R ) ) x )  =  x  /\  ( x ( +g  `  (mulGrp `  R )
) e )  =  x ) ) ) )
11 eqid 2196 . . 3  |-  (mulGrp `  R )  =  (mulGrp `  R )
12 dfur2.u . . 3  |-  .1.  =  ( 1r `  R )
1311, 12ringidvalg 13517 . 2  |-  ( R  e.  V  ->  .1.  =  ( 0g `  (mulGrp `  R ) ) )
14 dfur2.b . . . . . 6  |-  B  =  ( Base `  R
)
1511, 14mgpbasg 13482 . . . . 5  |-  ( R  e.  V  ->  B  =  ( Base `  (mulGrp `  R ) ) )
1615eleq2d 2266 . . . 4  |-  ( R  e.  V  ->  (
e  e.  B  <->  e  e.  ( Base `  (mulGrp `  R
) ) ) )
17 dfur2.t . . . . . . . . 9  |-  .x.  =  ( .r `  R )
1811, 17mgpplusgg 13480 . . . . . . . 8  |-  ( R  e.  V  ->  .x.  =  ( +g  `  (mulGrp `  R ) ) )
1918oveqd 5939 . . . . . . 7  |-  ( R  e.  V  ->  (
e  .x.  x )  =  ( e ( +g  `  (mulGrp `  R ) ) x ) )
2019eqeq1d 2205 . . . . . 6  |-  ( R  e.  V  ->  (
( e  .x.  x
)  =  x  <->  ( e
( +g  `  (mulGrp `  R ) ) x )  =  x ) )
2118oveqd 5939 . . . . . . 7  |-  ( R  e.  V  ->  (
x  .x.  e )  =  ( x ( +g  `  (mulGrp `  R ) ) e ) )
2221eqeq1d 2205 . . . . . 6  |-  ( R  e.  V  ->  (
( x  .x.  e
)  =  x  <->  ( x
( +g  `  (mulGrp `  R ) ) e )  =  x ) )
2320, 22anbi12d 473 . . . . 5  |-  ( R  e.  V  ->  (
( ( e  .x.  x )  =  x  /\  ( x  .x.  e )  =  x )  <->  ( ( e ( +g  `  (mulGrp `  R ) ) x )  =  x  /\  ( x ( +g  `  (mulGrp `  R )
) e )  =  x ) ) )
2415, 23raleqbidv 2709 . . . 4  |-  ( R  e.  V  ->  ( A. x  e.  B  ( ( e  .x.  x )  =  x  /\  ( x  .x.  e )  =  x )  <->  A. x  e.  (
Base `  (mulGrp `  R
) ) ( ( e ( +g  `  (mulGrp `  R ) ) x )  =  x  /\  ( x ( +g  `  (mulGrp `  R )
) e )  =  x ) ) )
2516, 24anbi12d 473 . . 3  |-  ( R  e.  V  ->  (
( e  e.  B  /\  A. x  e.  B  ( ( e  .x.  x )  =  x  /\  ( x  .x.  e )  =  x ) )  <->  ( e  e.  ( Base `  (mulGrp `  R ) )  /\  A. x  e.  ( Base `  (mulGrp `  R )
) ( ( e ( +g  `  (mulGrp `  R ) ) x )  =  x  /\  ( x ( +g  `  (mulGrp `  R )
) e )  =  x ) ) ) )
2625iotabidv 5241 . 2  |-  ( R  e.  V  ->  ( iota e ( e  e.  B  /\  A. x  e.  B  ( (
e  .x.  x )  =  x  /\  (
x  .x.  e )  =  x ) ) )  =  ( iota e
( e  e.  (
Base `  (mulGrp `  R
) )  /\  A. x  e.  ( Base `  (mulGrp `  R )
) ( ( e ( +g  `  (mulGrp `  R ) ) x )  =  x  /\  ( x ( +g  `  (mulGrp `  R )
) e )  =  x ) ) ) )
2710, 13, 263eqtr4d 2239 1  |-  ( R  e.  V  ->  .1.  =  ( iota e
( e  e.  B  /\  A. x  e.  B  ( ( e  .x.  x )  =  x  /\  ( x  .x.  e )  =  x ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1364    e. wcel 2167   A.wral 2475   _Vcvv 2763   iotacio 5217    Fn wfn 5253   ` cfv 5258  (class class class)co 5922   Basecbs 12678   +g cplusg 12755   .rcmulr 12756   0gc0g 12927  mulGrpcmgp 13476   1rcur 13515
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-cnex 7970  ax-resscn 7971  ax-1cn 7972  ax-1re 7973  ax-icn 7974  ax-addcl 7975  ax-addrcl 7976  ax-mulcl 7977  ax-addcom 7979  ax-addass 7981  ax-i2m1 7984  ax-0lt1 7985  ax-0id 7987  ax-rnegex 7988  ax-pre-ltirr 7991  ax-pre-ltadd 7995
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-br 4034  df-opab 4095  df-mpt 4096  df-id 4328  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-fv 5266  df-riota 5877  df-ov 5925  df-oprab 5926  df-mpo 5927  df-pnf 8063  df-mnf 8064  df-ltxr 8066  df-inn 8991  df-2 9049  df-3 9050  df-ndx 12681  df-slot 12682  df-base 12684  df-sets 12685  df-plusg 12768  df-mulr 12769  df-0g 12929  df-mgp 13477  df-ur 13516
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator