ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dfur2g Unicode version

Theorem dfur2g 13150
Description: The multiplicative identity is the unique element of the ring that is left- and right-neutral on all elements under multiplication. (Contributed by Mario Carneiro, 10-Jan-2015.)
Hypotheses
Ref Expression
dfur2.b  |-  B  =  ( Base `  R
)
dfur2.t  |-  .x.  =  ( .r `  R )
dfur2.u  |-  .1.  =  ( 1r `  R )
Assertion
Ref Expression
dfur2g  |-  ( R  e.  V  ->  .1.  =  ( iota e
( e  e.  B  /\  A. x  e.  B  ( ( e  .x.  x )  =  x  /\  ( x  .x.  e )  =  x ) ) ) )
Distinct variable groups:    x, e, B    R, e, x    e, V, x
Allowed substitution hints:    .x. ( x, e)    .1. (
x, e)

Proof of Theorem dfur2g
StepHypRef Expression
1 fnmgp 13137 . . . 4  |- mulGrp  Fn  _V
2 elex 2750 . . . 4  |-  ( R  e.  V  ->  R  e.  _V )
3 funfvex 5534 . . . . 5  |-  ( ( Fun mulGrp  /\  R  e.  dom mulGrp )  ->  (mulGrp `  R )  e.  _V )
43funfni 5318 . . . 4  |-  ( (mulGrp 
Fn  _V  /\  R  e. 
_V )  ->  (mulGrp `  R )  e.  _V )
51, 2, 4sylancr 414 . . 3  |-  ( R  e.  V  ->  (mulGrp `  R )  e.  _V )
6 eqid 2177 . . . 4  |-  ( Base `  (mulGrp `  R )
)  =  ( Base `  (mulGrp `  R )
)
7 eqid 2177 . . . 4  |-  ( +g  `  (mulGrp `  R )
)  =  ( +g  `  (mulGrp `  R )
)
8 eqid 2177 . . . 4  |-  ( 0g
`  (mulGrp `  R )
)  =  ( 0g
`  (mulGrp `  R )
)
96, 7, 8grpidvalg 12797 . . 3  |-  ( (mulGrp `  R )  e.  _V  ->  ( 0g `  (mulGrp `  R ) )  =  ( iota e ( e  e.  ( Base `  (mulGrp `  R )
)  /\  A. x  e.  ( Base `  (mulGrp `  R ) ) ( ( e ( +g  `  (mulGrp `  R )
) x )  =  x  /\  ( x ( +g  `  (mulGrp `  R ) ) e )  =  x ) ) ) )
105, 9syl 14 . 2  |-  ( R  e.  V  ->  ( 0g `  (mulGrp `  R
) )  =  ( iota e ( e  e.  ( Base `  (mulGrp `  R ) )  /\  A. x  e.  ( Base `  (mulGrp `  R )
) ( ( e ( +g  `  (mulGrp `  R ) ) x )  =  x  /\  ( x ( +g  `  (mulGrp `  R )
) e )  =  x ) ) ) )
11 eqid 2177 . . 3  |-  (mulGrp `  R )  =  (mulGrp `  R )
12 dfur2.u . . 3  |-  .1.  =  ( 1r `  R )
1311, 12ringidvalg 13149 . 2  |-  ( R  e.  V  ->  .1.  =  ( 0g `  (mulGrp `  R ) ) )
14 dfur2.b . . . . . 6  |-  B  =  ( Base `  R
)
1511, 14mgpbasg 13141 . . . . 5  |-  ( R  e.  V  ->  B  =  ( Base `  (mulGrp `  R ) ) )
1615eleq2d 2247 . . . 4  |-  ( R  e.  V  ->  (
e  e.  B  <->  e  e.  ( Base `  (mulGrp `  R
) ) ) )
17 dfur2.t . . . . . . . . 9  |-  .x.  =  ( .r `  R )
1811, 17mgpplusgg 13139 . . . . . . . 8  |-  ( R  e.  V  ->  .x.  =  ( +g  `  (mulGrp `  R ) ) )
1918oveqd 5894 . . . . . . 7  |-  ( R  e.  V  ->  (
e  .x.  x )  =  ( e ( +g  `  (mulGrp `  R ) ) x ) )
2019eqeq1d 2186 . . . . . 6  |-  ( R  e.  V  ->  (
( e  .x.  x
)  =  x  <->  ( e
( +g  `  (mulGrp `  R ) ) x )  =  x ) )
2118oveqd 5894 . . . . . . 7  |-  ( R  e.  V  ->  (
x  .x.  e )  =  ( x ( +g  `  (mulGrp `  R ) ) e ) )
2221eqeq1d 2186 . . . . . 6  |-  ( R  e.  V  ->  (
( x  .x.  e
)  =  x  <->  ( x
( +g  `  (mulGrp `  R ) ) e )  =  x ) )
2320, 22anbi12d 473 . . . . 5  |-  ( R  e.  V  ->  (
( ( e  .x.  x )  =  x  /\  ( x  .x.  e )  =  x )  <->  ( ( e ( +g  `  (mulGrp `  R ) ) x )  =  x  /\  ( x ( +g  `  (mulGrp `  R )
) e )  =  x ) ) )
2415, 23raleqbidv 2685 . . . 4  |-  ( R  e.  V  ->  ( A. x  e.  B  ( ( e  .x.  x )  =  x  /\  ( x  .x.  e )  =  x )  <->  A. x  e.  (
Base `  (mulGrp `  R
) ) ( ( e ( +g  `  (mulGrp `  R ) ) x )  =  x  /\  ( x ( +g  `  (mulGrp `  R )
) e )  =  x ) ) )
2516, 24anbi12d 473 . . 3  |-  ( R  e.  V  ->  (
( e  e.  B  /\  A. x  e.  B  ( ( e  .x.  x )  =  x  /\  ( x  .x.  e )  =  x ) )  <->  ( e  e.  ( Base `  (mulGrp `  R ) )  /\  A. x  e.  ( Base `  (mulGrp `  R )
) ( ( e ( +g  `  (mulGrp `  R ) ) x )  =  x  /\  ( x ( +g  `  (mulGrp `  R )
) e )  =  x ) ) ) )
2625iotabidv 5201 . 2  |-  ( R  e.  V  ->  ( iota e ( e  e.  B  /\  A. x  e.  B  ( (
e  .x.  x )  =  x  /\  (
x  .x.  e )  =  x ) ) )  =  ( iota e
( e  e.  (
Base `  (mulGrp `  R
) )  /\  A. x  e.  ( Base `  (mulGrp `  R )
) ( ( e ( +g  `  (mulGrp `  R ) ) x )  =  x  /\  ( x ( +g  `  (mulGrp `  R )
) e )  =  x ) ) ) )
2710, 13, 263eqtr4d 2220 1  |-  ( R  e.  V  ->  .1.  =  ( iota e
( e  e.  B  /\  A. x  e.  B  ( ( e  .x.  x )  =  x  /\  ( x  .x.  e )  =  x ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1353    e. wcel 2148   A.wral 2455   _Vcvv 2739   iotacio 5178    Fn wfn 5213   ` cfv 5218  (class class class)co 5877   Basecbs 12464   +g cplusg 12538   .rcmulr 12539   0gc0g 12710  mulGrpcmgp 13135   1rcur 13147
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-pow 4176  ax-pr 4211  ax-un 4435  ax-setind 4538  ax-cnex 7904  ax-resscn 7905  ax-1cn 7906  ax-1re 7907  ax-icn 7908  ax-addcl 7909  ax-addrcl 7910  ax-mulcl 7911  ax-addcom 7913  ax-addass 7915  ax-i2m1 7918  ax-0lt1 7919  ax-0id 7921  ax-rnegex 7922  ax-pre-ltirr 7925  ax-pre-ltadd 7929
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-rab 2464  df-v 2741  df-sbc 2965  df-csb 3060  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-nul 3425  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-int 3847  df-br 4006  df-opab 4067  df-mpt 4068  df-id 4295  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-rn 4639  df-res 4640  df-ima 4641  df-iota 5180  df-fun 5220  df-fn 5221  df-fv 5226  df-riota 5833  df-ov 5880  df-oprab 5881  df-mpo 5882  df-pnf 7996  df-mnf 7997  df-ltxr 7999  df-inn 8922  df-2 8980  df-3 8981  df-ndx 12467  df-slot 12468  df-base 12470  df-sets 12471  df-plusg 12551  df-mulr 12552  df-0g 12712  df-mgp 13136  df-ur 13148
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator