ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dfur2g Unicode version

Theorem dfur2g 12938
Description: The multiplicative identity is the unique element of the ring that is left- and right-neutral on all elements under multiplication. (Contributed by Mario Carneiro, 10-Jan-2015.)
Hypotheses
Ref Expression
dfur2.b  |-  B  =  ( Base `  R
)
dfur2.t  |-  .x.  =  ( .r `  R )
dfur2.u  |-  .1.  =  ( 1r `  R )
Assertion
Ref Expression
dfur2g  |-  ( R  e.  V  ->  .1.  =  ( iota e
( e  e.  B  /\  A. x  e.  B  ( ( e  .x.  x )  =  x  /\  ( x  .x.  e )  =  x ) ) ) )
Distinct variable groups:    x, e, B    R, e, x    e, V, x
Allowed substitution hints:    .x. ( x, e)    .1. (
x, e)

Proof of Theorem dfur2g
StepHypRef Expression
1 fnmgp 12927 . . . 4  |- mulGrp  Fn  _V
2 elex 2746 . . . 4  |-  ( R  e.  V  ->  R  e.  _V )
3 funfvex 5524 . . . . 5  |-  ( ( Fun mulGrp  /\  R  e.  dom mulGrp )  ->  (mulGrp `  R )  e.  _V )
43funfni 5308 . . . 4  |-  ( (mulGrp 
Fn  _V  /\  R  e. 
_V )  ->  (mulGrp `  R )  e.  _V )
51, 2, 4sylancr 414 . . 3  |-  ( R  e.  V  ->  (mulGrp `  R )  e.  _V )
6 eqid 2175 . . . 4  |-  ( Base `  (mulGrp `  R )
)  =  ( Base `  (mulGrp `  R )
)
7 eqid 2175 . . . 4  |-  ( +g  `  (mulGrp `  R )
)  =  ( +g  `  (mulGrp `  R )
)
8 eqid 2175 . . . 4  |-  ( 0g
`  (mulGrp `  R )
)  =  ( 0g
`  (mulGrp `  R )
)
96, 7, 8grpidvalg 12657 . . 3  |-  ( (mulGrp `  R )  e.  _V  ->  ( 0g `  (mulGrp `  R ) )  =  ( iota e ( e  e.  ( Base `  (mulGrp `  R )
)  /\  A. x  e.  ( Base `  (mulGrp `  R ) ) ( ( e ( +g  `  (mulGrp `  R )
) x )  =  x  /\  ( x ( +g  `  (mulGrp `  R ) ) e )  =  x ) ) ) )
105, 9syl 14 . 2  |-  ( R  e.  V  ->  ( 0g `  (mulGrp `  R
) )  =  ( iota e ( e  e.  ( Base `  (mulGrp `  R ) )  /\  A. x  e.  ( Base `  (mulGrp `  R )
) ( ( e ( +g  `  (mulGrp `  R ) ) x )  =  x  /\  ( x ( +g  `  (mulGrp `  R )
) e )  =  x ) ) ) )
11 eqid 2175 . . 3  |-  (mulGrp `  R )  =  (mulGrp `  R )
12 dfur2.u . . 3  |-  .1.  =  ( 1r `  R )
1311, 12ringidvalg 12937 . 2  |-  ( R  e.  V  ->  .1.  =  ( 0g `  (mulGrp `  R ) ) )
14 dfur2.b . . . . . 6  |-  B  =  ( Base `  R
)
1511, 14mgpbasg 12930 . . . . 5  |-  ( R  e.  V  ->  B  =  ( Base `  (mulGrp `  R ) ) )
1615eleq2d 2245 . . . 4  |-  ( R  e.  V  ->  (
e  e.  B  <->  e  e.  ( Base `  (mulGrp `  R
) ) ) )
17 dfur2.t . . . . . . . . 9  |-  .x.  =  ( .r `  R )
1811, 17mgpplusgg 12929 . . . . . . . 8  |-  ( R  e.  V  ->  .x.  =  ( +g  `  (mulGrp `  R ) ) )
1918oveqd 5882 . . . . . . 7  |-  ( R  e.  V  ->  (
e  .x.  x )  =  ( e ( +g  `  (mulGrp `  R ) ) x ) )
2019eqeq1d 2184 . . . . . 6  |-  ( R  e.  V  ->  (
( e  .x.  x
)  =  x  <->  ( e
( +g  `  (mulGrp `  R ) ) x )  =  x ) )
2118oveqd 5882 . . . . . . 7  |-  ( R  e.  V  ->  (
x  .x.  e )  =  ( x ( +g  `  (mulGrp `  R ) ) e ) )
2221eqeq1d 2184 . . . . . 6  |-  ( R  e.  V  ->  (
( x  .x.  e
)  =  x  <->  ( x
( +g  `  (mulGrp `  R ) ) e )  =  x ) )
2320, 22anbi12d 473 . . . . 5  |-  ( R  e.  V  ->  (
( ( e  .x.  x )  =  x  /\  ( x  .x.  e )  =  x )  <->  ( ( e ( +g  `  (mulGrp `  R ) ) x )  =  x  /\  ( x ( +g  `  (mulGrp `  R )
) e )  =  x ) ) )
2415, 23raleqbidv 2682 . . . 4  |-  ( R  e.  V  ->  ( A. x  e.  B  ( ( e  .x.  x )  =  x  /\  ( x  .x.  e )  =  x )  <->  A. x  e.  (
Base `  (mulGrp `  R
) ) ( ( e ( +g  `  (mulGrp `  R ) ) x )  =  x  /\  ( x ( +g  `  (mulGrp `  R )
) e )  =  x ) ) )
2516, 24anbi12d 473 . . 3  |-  ( R  e.  V  ->  (
( e  e.  B  /\  A. x  e.  B  ( ( e  .x.  x )  =  x  /\  ( x  .x.  e )  =  x ) )  <->  ( e  e.  ( Base `  (mulGrp `  R ) )  /\  A. x  e.  ( Base `  (mulGrp `  R )
) ( ( e ( +g  `  (mulGrp `  R ) ) x )  =  x  /\  ( x ( +g  `  (mulGrp `  R )
) e )  =  x ) ) ) )
2625iotabidv 5191 . 2  |-  ( R  e.  V  ->  ( iota e ( e  e.  B  /\  A. x  e.  B  ( (
e  .x.  x )  =  x  /\  (
x  .x.  e )  =  x ) ) )  =  ( iota e
( e  e.  (
Base `  (mulGrp `  R
) )  /\  A. x  e.  ( Base `  (mulGrp `  R )
) ( ( e ( +g  `  (mulGrp `  R ) ) x )  =  x  /\  ( x ( +g  `  (mulGrp `  R )
) e )  =  x ) ) ) )
2710, 13, 263eqtr4d 2218 1  |-  ( R  e.  V  ->  .1.  =  ( iota e
( e  e.  B  /\  A. x  e.  B  ( ( e  .x.  x )  =  x  /\  ( x  .x.  e )  =  x ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1353    e. wcel 2146   A.wral 2453   _Vcvv 2735   iotacio 5168    Fn wfn 5203   ` cfv 5208  (class class class)co 5865   Basecbs 12428   +g cplusg 12492   .rcmulr 12493   0gc0g 12626  mulGrpcmgp 12925   1rcur 12935
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1445  ax-7 1446  ax-gen 1447  ax-ie1 1491  ax-ie2 1492  ax-8 1502  ax-10 1503  ax-11 1504  ax-i12 1505  ax-bndl 1507  ax-4 1508  ax-17 1524  ax-i9 1528  ax-ial 1532  ax-i5r 1533  ax-13 2148  ax-14 2149  ax-ext 2157  ax-sep 4116  ax-pow 4169  ax-pr 4203  ax-un 4427  ax-setind 4530  ax-cnex 7877  ax-resscn 7878  ax-1cn 7879  ax-1re 7880  ax-icn 7881  ax-addcl 7882  ax-addrcl 7883  ax-mulcl 7884  ax-addcom 7886  ax-addass 7888  ax-i2m1 7891  ax-0lt1 7892  ax-0id 7894  ax-rnegex 7895  ax-pre-ltirr 7898  ax-pre-ltadd 7902
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1459  df-sb 1761  df-eu 2027  df-mo 2028  df-clab 2162  df-cleq 2168  df-clel 2171  df-nfc 2306  df-ne 2346  df-nel 2441  df-ral 2458  df-rex 2459  df-rab 2462  df-v 2737  df-sbc 2961  df-csb 3056  df-dif 3129  df-un 3131  df-in 3133  df-ss 3140  df-nul 3421  df-pw 3574  df-sn 3595  df-pr 3596  df-op 3598  df-uni 3806  df-int 3841  df-br 3999  df-opab 4060  df-mpt 4061  df-id 4287  df-xp 4626  df-rel 4627  df-cnv 4628  df-co 4629  df-dm 4630  df-rn 4631  df-res 4632  df-ima 4633  df-iota 5170  df-fun 5210  df-fn 5211  df-fv 5216  df-riota 5821  df-ov 5868  df-oprab 5869  df-mpo 5870  df-pnf 7968  df-mnf 7969  df-ltxr 7971  df-inn 8891  df-2 8949  df-3 8950  df-ndx 12431  df-slot 12432  df-base 12434  df-sets 12435  df-plusg 12505  df-mulr 12506  df-0g 12628  df-mgp 12926  df-ur 12936
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator