| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > lmodsubdi | Unicode version | ||
| Description: Scalar multiplication distributive law for subtraction. (Contributed by NM, 2-Jul-2014.) |
| Ref | Expression |
|---|---|
| lmodsubdi.v |
|
| lmodsubdi.t |
|
| lmodsubdi.f |
|
| lmodsubdi.k |
|
| lmodsubdi.m |
|
| lmodsubdi.w |
|
| lmodsubdi.a |
|
| lmodsubdi.x |
|
| lmodsubdi.y |
|
| Ref | Expression |
|---|---|
| lmodsubdi |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lmodsubdi.w |
. . . 4
| |
| 2 | lmodsubdi.x |
. . . 4
| |
| 3 | lmodsubdi.y |
. . . 4
| |
| 4 | lmodsubdi.v |
. . . . 5
| |
| 5 | eqid 2229 |
. . . . 5
| |
| 6 | lmodsubdi.m |
. . . . 5
| |
| 7 | lmodsubdi.f |
. . . . 5
| |
| 8 | lmodsubdi.t |
. . . . 5
| |
| 9 | eqid 2229 |
. . . . 5
| |
| 10 | eqid 2229 |
. . . . 5
| |
| 11 | 4, 5, 6, 7, 8, 9, 10 | lmodvsubval2 14300 |
. . . 4
|
| 12 | 1, 2, 3, 11 | syl3anc 1271 |
. . 3
|
| 13 | 12 | oveq2d 6016 |
. 2
|
| 14 | lmodsubdi.k |
. . . . . . . 8
| |
| 15 | eqid 2229 |
. . . . . . . 8
| |
| 16 | 7 | lmodring 14253 |
. . . . . . . . 9
|
| 17 | 1, 16 | syl 14 |
. . . . . . . 8
|
| 18 | lmodsubdi.a |
. . . . . . . 8
| |
| 19 | 14, 15, 10, 9, 17, 18 | ringnegr 14010 |
. . . . . . 7
|
| 20 | 14, 15, 10, 9, 17, 18 | ringnegl 14009 |
. . . . . . 7
|
| 21 | 19, 20 | eqtr4d 2265 |
. . . . . 6
|
| 22 | 21 | oveq1d 6015 |
. . . . 5
|
| 23 | ringgrp 13959 |
. . . . . . . 8
| |
| 24 | 17, 23 | syl 14 |
. . . . . . 7
|
| 25 | 14, 10 | ringidcl 13978 |
. . . . . . . 8
|
| 26 | 17, 25 | syl 14 |
. . . . . . 7
|
| 27 | 14, 9 | grpinvcl 13576 |
. . . . . . 7
|
| 28 | 24, 26, 27 | syl2anc 411 |
. . . . . 6
|
| 29 | 4, 7, 8, 14, 15 | lmodvsass 14271 |
. . . . . 6
|
| 30 | 1, 18, 28, 3, 29 | syl13anc 1273 |
. . . . 5
|
| 31 | 4, 7, 8, 14, 15 | lmodvsass 14271 |
. . . . . 6
|
| 32 | 1, 28, 18, 3, 31 | syl13anc 1273 |
. . . . 5
|
| 33 | 22, 30, 32 | 3eqtr3d 2270 |
. . . 4
|
| 34 | 33 | oveq2d 6016 |
. . 3
|
| 35 | 4, 7, 8, 14 | lmodvscl 14263 |
. . . . 5
|
| 36 | 1, 28, 3, 35 | syl3anc 1271 |
. . . 4
|
| 37 | 4, 5, 7, 8, 14 | lmodvsdi 14269 |
. . . 4
|
| 38 | 1, 18, 2, 36, 37 | syl13anc 1273 |
. . 3
|
| 39 | 4, 7, 8, 14 | lmodvscl 14263 |
. . . . 5
|
| 40 | 1, 18, 2, 39 | syl3anc 1271 |
. . . 4
|
| 41 | 4, 7, 8, 14 | lmodvscl 14263 |
. . . . 5
|
| 42 | 1, 18, 3, 41 | syl3anc 1271 |
. . . 4
|
| 43 | 4, 5, 6, 7, 8, 9, 10 | lmodvsubval2 14300 |
. . . 4
|
| 44 | 1, 40, 42, 43 | syl3anc 1271 |
. . 3
|
| 45 | 34, 38, 44 | 3eqtr4rd 2273 |
. 2
|
| 46 | 13, 45 | eqtr4d 2265 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-coll 4198 ax-sep 4201 ax-pow 4257 ax-pr 4292 ax-un 4523 ax-setind 4628 ax-cnex 8086 ax-resscn 8087 ax-1cn 8088 ax-1re 8089 ax-icn 8090 ax-addcl 8091 ax-addrcl 8092 ax-mulcl 8093 ax-addcom 8095 ax-addass 8097 ax-i2m1 8100 ax-0lt1 8101 ax-0id 8103 ax-rnegex 8104 ax-pre-ltirr 8107 ax-pre-ltadd 8111 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-reu 2515 df-rmo 2516 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-int 3923 df-iun 3966 df-br 4083 df-opab 4145 df-mpt 4146 df-id 4383 df-xp 4724 df-rel 4725 df-cnv 4726 df-co 4727 df-dm 4728 df-rn 4729 df-res 4730 df-ima 4731 df-iota 5277 df-fun 5319 df-fn 5320 df-f 5321 df-f1 5322 df-fo 5323 df-f1o 5324 df-fv 5325 df-riota 5953 df-ov 6003 df-oprab 6004 df-mpo 6005 df-1st 6284 df-2nd 6285 df-pnf 8179 df-mnf 8180 df-ltxr 8182 df-inn 9107 df-2 9165 df-3 9166 df-4 9167 df-5 9168 df-6 9169 df-ndx 13030 df-slot 13031 df-base 13033 df-sets 13034 df-plusg 13118 df-mulr 13119 df-sca 13121 df-vsca 13122 df-0g 13286 df-mgm 13384 df-sgrp 13430 df-mnd 13445 df-grp 13531 df-minusg 13532 df-sbg 13533 df-mgp 13879 df-ur 13918 df-ring 13956 df-lmod 14247 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |