| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > lmodsubdi | Unicode version | ||
| Description: Scalar multiplication distributive law for subtraction. (Contributed by NM, 2-Jul-2014.) |
| Ref | Expression |
|---|---|
| lmodsubdi.v |
|
| lmodsubdi.t |
|
| lmodsubdi.f |
|
| lmodsubdi.k |
|
| lmodsubdi.m |
|
| lmodsubdi.w |
|
| lmodsubdi.a |
|
| lmodsubdi.x |
|
| lmodsubdi.y |
|
| Ref | Expression |
|---|---|
| lmodsubdi |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lmodsubdi.w |
. . . 4
| |
| 2 | lmodsubdi.x |
. . . 4
| |
| 3 | lmodsubdi.y |
. . . 4
| |
| 4 | lmodsubdi.v |
. . . . 5
| |
| 5 | eqid 2196 |
. . . . 5
| |
| 6 | lmodsubdi.m |
. . . . 5
| |
| 7 | lmodsubdi.f |
. . . . 5
| |
| 8 | lmodsubdi.t |
. . . . 5
| |
| 9 | eqid 2196 |
. . . . 5
| |
| 10 | eqid 2196 |
. . . . 5
| |
| 11 | 4, 5, 6, 7, 8, 9, 10 | lmodvsubval2 13974 |
. . . 4
|
| 12 | 1, 2, 3, 11 | syl3anc 1249 |
. . 3
|
| 13 | 12 | oveq2d 5941 |
. 2
|
| 14 | lmodsubdi.k |
. . . . . . . 8
| |
| 15 | eqid 2196 |
. . . . . . . 8
| |
| 16 | 7 | lmodring 13927 |
. . . . . . . . 9
|
| 17 | 1, 16 | syl 14 |
. . . . . . . 8
|
| 18 | lmodsubdi.a |
. . . . . . . 8
| |
| 19 | 14, 15, 10, 9, 17, 18 | ringnegr 13684 |
. . . . . . 7
|
| 20 | 14, 15, 10, 9, 17, 18 | ringnegl 13683 |
. . . . . . 7
|
| 21 | 19, 20 | eqtr4d 2232 |
. . . . . 6
|
| 22 | 21 | oveq1d 5940 |
. . . . 5
|
| 23 | ringgrp 13633 |
. . . . . . . 8
| |
| 24 | 17, 23 | syl 14 |
. . . . . . 7
|
| 25 | 14, 10 | ringidcl 13652 |
. . . . . . . 8
|
| 26 | 17, 25 | syl 14 |
. . . . . . 7
|
| 27 | 14, 9 | grpinvcl 13250 |
. . . . . . 7
|
| 28 | 24, 26, 27 | syl2anc 411 |
. . . . . 6
|
| 29 | 4, 7, 8, 14, 15 | lmodvsass 13945 |
. . . . . 6
|
| 30 | 1, 18, 28, 3, 29 | syl13anc 1251 |
. . . . 5
|
| 31 | 4, 7, 8, 14, 15 | lmodvsass 13945 |
. . . . . 6
|
| 32 | 1, 28, 18, 3, 31 | syl13anc 1251 |
. . . . 5
|
| 33 | 22, 30, 32 | 3eqtr3d 2237 |
. . . 4
|
| 34 | 33 | oveq2d 5941 |
. . 3
|
| 35 | 4, 7, 8, 14 | lmodvscl 13937 |
. . . . 5
|
| 36 | 1, 28, 3, 35 | syl3anc 1249 |
. . . 4
|
| 37 | 4, 5, 7, 8, 14 | lmodvsdi 13943 |
. . . 4
|
| 38 | 1, 18, 2, 36, 37 | syl13anc 1251 |
. . 3
|
| 39 | 4, 7, 8, 14 | lmodvscl 13937 |
. . . . 5
|
| 40 | 1, 18, 2, 39 | syl3anc 1249 |
. . . 4
|
| 41 | 4, 7, 8, 14 | lmodvscl 13937 |
. . . . 5
|
| 42 | 1, 18, 3, 41 | syl3anc 1249 |
. . . 4
|
| 43 | 4, 5, 6, 7, 8, 9, 10 | lmodvsubval2 13974 |
. . . 4
|
| 44 | 1, 40, 42, 43 | syl3anc 1249 |
. . 3
|
| 45 | 34, 38, 44 | 3eqtr4rd 2240 |
. 2
|
| 46 | 13, 45 | eqtr4d 2232 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4149 ax-sep 4152 ax-pow 4208 ax-pr 4243 ax-un 4469 ax-setind 4574 ax-cnex 7987 ax-resscn 7988 ax-1cn 7989 ax-1re 7990 ax-icn 7991 ax-addcl 7992 ax-addrcl 7993 ax-mulcl 7994 ax-addcom 7996 ax-addass 7998 ax-i2m1 8001 ax-0lt1 8002 ax-0id 8004 ax-rnegex 8005 ax-pre-ltirr 8008 ax-pre-ltadd 8012 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rmo 2483 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3452 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-int 3876 df-iun 3919 df-br 4035 df-opab 4096 df-mpt 4097 df-id 4329 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-rn 4675 df-res 4676 df-ima 4677 df-iota 5220 df-fun 5261 df-fn 5262 df-f 5263 df-f1 5264 df-fo 5265 df-f1o 5266 df-fv 5267 df-riota 5880 df-ov 5928 df-oprab 5929 df-mpo 5930 df-1st 6207 df-2nd 6208 df-pnf 8080 df-mnf 8081 df-ltxr 8083 df-inn 9008 df-2 9066 df-3 9067 df-4 9068 df-5 9069 df-6 9070 df-ndx 12706 df-slot 12707 df-base 12709 df-sets 12710 df-plusg 12793 df-mulr 12794 df-sca 12796 df-vsca 12797 df-0g 12960 df-mgm 13058 df-sgrp 13104 df-mnd 13119 df-grp 13205 df-minusg 13206 df-sbg 13207 df-mgp 13553 df-ur 13592 df-ring 13630 df-lmod 13921 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |