ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lmodsubdi Unicode version

Theorem lmodsubdi 13657
Description: Scalar multiplication distributive law for subtraction. (Contributed by NM, 2-Jul-2014.)
Hypotheses
Ref Expression
lmodsubdi.v  |-  V  =  ( Base `  W
)
lmodsubdi.t  |-  .x.  =  ( .s `  W )
lmodsubdi.f  |-  F  =  (Scalar `  W )
lmodsubdi.k  |-  K  =  ( Base `  F
)
lmodsubdi.m  |-  .-  =  ( -g `  W )
lmodsubdi.w  |-  ( ph  ->  W  e.  LMod )
lmodsubdi.a  |-  ( ph  ->  A  e.  K )
lmodsubdi.x  |-  ( ph  ->  X  e.  V )
lmodsubdi.y  |-  ( ph  ->  Y  e.  V )
Assertion
Ref Expression
lmodsubdi  |-  ( ph  ->  ( A  .x.  ( X  .-  Y ) )  =  ( ( A 
.x.  X )  .-  ( A  .x.  Y ) ) )

Proof of Theorem lmodsubdi
StepHypRef Expression
1 lmodsubdi.w . . . 4  |-  ( ph  ->  W  e.  LMod )
2 lmodsubdi.x . . . 4  |-  ( ph  ->  X  e.  V )
3 lmodsubdi.y . . . 4  |-  ( ph  ->  Y  e.  V )
4 lmodsubdi.v . . . . 5  |-  V  =  ( Base `  W
)
5 eqid 2189 . . . . 5  |-  ( +g  `  W )  =  ( +g  `  W )
6 lmodsubdi.m . . . . 5  |-  .-  =  ( -g `  W )
7 lmodsubdi.f . . . . 5  |-  F  =  (Scalar `  W )
8 lmodsubdi.t . . . . 5  |-  .x.  =  ( .s `  W )
9 eqid 2189 . . . . 5  |-  ( invg `  F )  =  ( invg `  F )
10 eqid 2189 . . . . 5  |-  ( 1r
`  F )  =  ( 1r `  F
)
114, 5, 6, 7, 8, 9, 10lmodvsubval2 13655 . . . 4  |-  ( ( W  e.  LMod  /\  X  e.  V  /\  Y  e.  V )  ->  ( X  .-  Y )  =  ( X ( +g  `  W ) ( ( ( invg `  F ) `  ( 1r `  F ) ) 
.x.  Y ) ) )
121, 2, 3, 11syl3anc 1249 . . 3  |-  ( ph  ->  ( X  .-  Y
)  =  ( X ( +g  `  W
) ( ( ( invg `  F
) `  ( 1r `  F ) )  .x.  Y ) ) )
1312oveq2d 5911 . 2  |-  ( ph  ->  ( A  .x.  ( X  .-  Y ) )  =  ( A  .x.  ( X ( +g  `  W
) ( ( ( invg `  F
) `  ( 1r `  F ) )  .x.  Y ) ) ) )
14 lmodsubdi.k . . . . . . . 8  |-  K  =  ( Base `  F
)
15 eqid 2189 . . . . . . . 8  |-  ( .r
`  F )  =  ( .r `  F
)
167lmodring 13608 . . . . . . . . 9  |-  ( W  e.  LMod  ->  F  e. 
Ring )
171, 16syl 14 . . . . . . . 8  |-  ( ph  ->  F  e.  Ring )
18 lmodsubdi.a . . . . . . . 8  |-  ( ph  ->  A  e.  K )
1914, 15, 10, 9, 17, 18ringnegr 13401 . . . . . . 7  |-  ( ph  ->  ( A ( .r
`  F ) ( ( invg `  F ) `  ( 1r `  F ) ) )  =  ( ( invg `  F
) `  A )
)
2014, 15, 10, 9, 17, 18ringnegl 13400 . . . . . . 7  |-  ( ph  ->  ( ( ( invg `  F ) `
 ( 1r `  F ) ) ( .r `  F ) A )  =  ( ( invg `  F ) `  A
) )
2119, 20eqtr4d 2225 . . . . . 6  |-  ( ph  ->  ( A ( .r
`  F ) ( ( invg `  F ) `  ( 1r `  F ) ) )  =  ( ( ( invg `  F ) `  ( 1r `  F ) ) ( .r `  F
) A ) )
2221oveq1d 5910 . . . . 5  |-  ( ph  ->  ( ( A ( .r `  F ) ( ( invg `  F ) `  ( 1r `  F ) ) )  .x.  Y )  =  ( ( ( ( invg `  F ) `  ( 1r `  F ) ) ( .r `  F
) A )  .x.  Y ) )
23 ringgrp 13352 . . . . . . . 8  |-  ( F  e.  Ring  ->  F  e. 
Grp )
2417, 23syl 14 . . . . . . 7  |-  ( ph  ->  F  e.  Grp )
2514, 10ringidcl 13371 . . . . . . . 8  |-  ( F  e.  Ring  ->  ( 1r
`  F )  e.  K )
2617, 25syl 14 . . . . . . 7  |-  ( ph  ->  ( 1r `  F
)  e.  K )
2714, 9grpinvcl 12989 . . . . . . 7  |-  ( ( F  e.  Grp  /\  ( 1r `  F )  e.  K )  -> 
( ( invg `  F ) `  ( 1r `  F ) )  e.  K )
2824, 26, 27syl2anc 411 . . . . . 6  |-  ( ph  ->  ( ( invg `  F ) `  ( 1r `  F ) )  e.  K )
294, 7, 8, 14, 15lmodvsass 13626 . . . . . 6  |-  ( ( W  e.  LMod  /\  ( A  e.  K  /\  ( ( invg `  F ) `  ( 1r `  F ) )  e.  K  /\  Y  e.  V ) )  -> 
( ( A ( .r `  F ) ( ( invg `  F ) `  ( 1r `  F ) ) )  .x.  Y )  =  ( A  .x.  ( ( ( invg `  F ) `
 ( 1r `  F ) )  .x.  Y ) ) )
301, 18, 28, 3, 29syl13anc 1251 . . . . 5  |-  ( ph  ->  ( ( A ( .r `  F ) ( ( invg `  F ) `  ( 1r `  F ) ) )  .x.  Y )  =  ( A  .x.  ( ( ( invg `  F ) `
 ( 1r `  F ) )  .x.  Y ) ) )
314, 7, 8, 14, 15lmodvsass 13626 . . . . . 6  |-  ( ( W  e.  LMod  /\  (
( ( invg `  F ) `  ( 1r `  F ) )  e.  K  /\  A  e.  K  /\  Y  e.  V ) )  -> 
( ( ( ( invg `  F
) `  ( 1r `  F ) ) ( .r `  F ) A )  .x.  Y
)  =  ( ( ( invg `  F ) `  ( 1r `  F ) ) 
.x.  ( A  .x.  Y ) ) )
321, 28, 18, 3, 31syl13anc 1251 . . . . 5  |-  ( ph  ->  ( ( ( ( invg `  F
) `  ( 1r `  F ) ) ( .r `  F ) A )  .x.  Y
)  =  ( ( ( invg `  F ) `  ( 1r `  F ) ) 
.x.  ( A  .x.  Y ) ) )
3322, 30, 323eqtr3d 2230 . . . 4  |-  ( ph  ->  ( A  .x.  (
( ( invg `  F ) `  ( 1r `  F ) ) 
.x.  Y ) )  =  ( ( ( invg `  F
) `  ( 1r `  F ) )  .x.  ( A  .x.  Y ) ) )
3433oveq2d 5911 . . 3  |-  ( ph  ->  ( ( A  .x.  X ) ( +g  `  W ) ( A 
.x.  ( ( ( invg `  F
) `  ( 1r `  F ) )  .x.  Y ) ) )  =  ( ( A 
.x.  X ) ( +g  `  W ) ( ( ( invg `  F ) `
 ( 1r `  F ) )  .x.  ( A  .x.  Y ) ) ) )
354, 7, 8, 14lmodvscl 13618 . . . . 5  |-  ( ( W  e.  LMod  /\  (
( invg `  F ) `  ( 1r `  F ) )  e.  K  /\  Y  e.  V )  ->  (
( ( invg `  F ) `  ( 1r `  F ) ) 
.x.  Y )  e.  V )
361, 28, 3, 35syl3anc 1249 . . . 4  |-  ( ph  ->  ( ( ( invg `  F ) `
 ( 1r `  F ) )  .x.  Y )  e.  V
)
374, 5, 7, 8, 14lmodvsdi 13624 . . . 4  |-  ( ( W  e.  LMod  /\  ( A  e.  K  /\  X  e.  V  /\  ( ( ( invg `  F ) `
 ( 1r `  F ) )  .x.  Y )  e.  V
) )  ->  ( A  .x.  ( X ( +g  `  W ) ( ( ( invg `  F ) `
 ( 1r `  F ) )  .x.  Y ) ) )  =  ( ( A 
.x.  X ) ( +g  `  W ) ( A  .x.  (
( ( invg `  F ) `  ( 1r `  F ) ) 
.x.  Y ) ) ) )
381, 18, 2, 36, 37syl13anc 1251 . . 3  |-  ( ph  ->  ( A  .x.  ( X ( +g  `  W
) ( ( ( invg `  F
) `  ( 1r `  F ) )  .x.  Y ) ) )  =  ( ( A 
.x.  X ) ( +g  `  W ) ( A  .x.  (
( ( invg `  F ) `  ( 1r `  F ) ) 
.x.  Y ) ) ) )
394, 7, 8, 14lmodvscl 13618 . . . . 5  |-  ( ( W  e.  LMod  /\  A  e.  K  /\  X  e.  V )  ->  ( A  .x.  X )  e.  V )
401, 18, 2, 39syl3anc 1249 . . . 4  |-  ( ph  ->  ( A  .x.  X
)  e.  V )
414, 7, 8, 14lmodvscl 13618 . . . . 5  |-  ( ( W  e.  LMod  /\  A  e.  K  /\  Y  e.  V )  ->  ( A  .x.  Y )  e.  V )
421, 18, 3, 41syl3anc 1249 . . . 4  |-  ( ph  ->  ( A  .x.  Y
)  e.  V )
434, 5, 6, 7, 8, 9, 10lmodvsubval2 13655 . . . 4  |-  ( ( W  e.  LMod  /\  ( A  .x.  X )  e.  V  /\  ( A 
.x.  Y )  e.  V )  ->  (
( A  .x.  X
)  .-  ( A  .x.  Y ) )  =  ( ( A  .x.  X ) ( +g  `  W ) ( ( ( invg `  F ) `  ( 1r `  F ) ) 
.x.  ( A  .x.  Y ) ) ) )
441, 40, 42, 43syl3anc 1249 . . 3  |-  ( ph  ->  ( ( A  .x.  X )  .-  ( A  .x.  Y ) )  =  ( ( A 
.x.  X ) ( +g  `  W ) ( ( ( invg `  F ) `
 ( 1r `  F ) )  .x.  ( A  .x.  Y ) ) ) )
4534, 38, 443eqtr4rd 2233 . 2  |-  ( ph  ->  ( ( A  .x.  X )  .-  ( A  .x.  Y ) )  =  ( A  .x.  ( X ( +g  `  W
) ( ( ( invg `  F
) `  ( 1r `  F ) )  .x.  Y ) ) ) )
4613, 45eqtr4d 2225 1  |-  ( ph  ->  ( A  .x.  ( X  .-  Y ) )  =  ( ( A 
.x.  X )  .-  ( A  .x.  Y ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1364    e. wcel 2160   ` cfv 5235  (class class class)co 5895   Basecbs 12511   +g cplusg 12586   .rcmulr 12587  Scalarcsca 12589   .scvsca 12590   Grpcgrp 12942   invgcminusg 12943   -gcsg 12944   1rcur 13310   Ringcrg 13347   LModclmod 13600
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2162  ax-14 2163  ax-ext 2171  ax-coll 4133  ax-sep 4136  ax-pow 4192  ax-pr 4227  ax-un 4451  ax-setind 4554  ax-cnex 7931  ax-resscn 7932  ax-1cn 7933  ax-1re 7934  ax-icn 7935  ax-addcl 7936  ax-addrcl 7937  ax-mulcl 7938  ax-addcom 7940  ax-addass 7942  ax-i2m1 7945  ax-0lt1 7946  ax-0id 7948  ax-rnegex 7949  ax-pre-ltirr 7952  ax-pre-ltadd 7956
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ne 2361  df-nel 2456  df-ral 2473  df-rex 2474  df-reu 2475  df-rmo 2476  df-rab 2477  df-v 2754  df-sbc 2978  df-csb 3073  df-dif 3146  df-un 3148  df-in 3150  df-ss 3157  df-nul 3438  df-pw 3592  df-sn 3613  df-pr 3614  df-op 3616  df-uni 3825  df-int 3860  df-iun 3903  df-br 4019  df-opab 4080  df-mpt 4081  df-id 4311  df-xp 4650  df-rel 4651  df-cnv 4652  df-co 4653  df-dm 4654  df-rn 4655  df-res 4656  df-ima 4657  df-iota 5196  df-fun 5237  df-fn 5238  df-f 5239  df-f1 5240  df-fo 5241  df-f1o 5242  df-fv 5243  df-riota 5851  df-ov 5898  df-oprab 5899  df-mpo 5900  df-1st 6164  df-2nd 6165  df-pnf 8023  df-mnf 8024  df-ltxr 8026  df-inn 8949  df-2 9007  df-3 9008  df-4 9009  df-5 9010  df-6 9011  df-ndx 12514  df-slot 12515  df-base 12517  df-sets 12518  df-plusg 12599  df-mulr 12600  df-sca 12602  df-vsca 12603  df-0g 12760  df-mgm 12829  df-sgrp 12862  df-mnd 12875  df-grp 12945  df-minusg 12946  df-sbg 12947  df-mgp 13272  df-ur 13311  df-ring 13349  df-lmod 13602
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator