ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lmodsubdi Unicode version

Theorem lmodsubdi 13439
Description: Scalar multiplication distributive law for subtraction. (Contributed by NM, 2-Jul-2014.)
Hypotheses
Ref Expression
lmodsubdi.v  |-  V  =  ( Base `  W
)
lmodsubdi.t  |-  .x.  =  ( .s `  W )
lmodsubdi.f  |-  F  =  (Scalar `  W )
lmodsubdi.k  |-  K  =  ( Base `  F
)
lmodsubdi.m  |-  .-  =  ( -g `  W )
lmodsubdi.w  |-  ( ph  ->  W  e.  LMod )
lmodsubdi.a  |-  ( ph  ->  A  e.  K )
lmodsubdi.x  |-  ( ph  ->  X  e.  V )
lmodsubdi.y  |-  ( ph  ->  Y  e.  V )
Assertion
Ref Expression
lmodsubdi  |-  ( ph  ->  ( A  .x.  ( X  .-  Y ) )  =  ( ( A 
.x.  X )  .-  ( A  .x.  Y ) ) )

Proof of Theorem lmodsubdi
StepHypRef Expression
1 lmodsubdi.w . . . 4  |-  ( ph  ->  W  e.  LMod )
2 lmodsubdi.x . . . 4  |-  ( ph  ->  X  e.  V )
3 lmodsubdi.y . . . 4  |-  ( ph  ->  Y  e.  V )
4 lmodsubdi.v . . . . 5  |-  V  =  ( Base `  W
)
5 eqid 2177 . . . . 5  |-  ( +g  `  W )  =  ( +g  `  W )
6 lmodsubdi.m . . . . 5  |-  .-  =  ( -g `  W )
7 lmodsubdi.f . . . . 5  |-  F  =  (Scalar `  W )
8 lmodsubdi.t . . . . 5  |-  .x.  =  ( .s `  W )
9 eqid 2177 . . . . 5  |-  ( invg `  F )  =  ( invg `  F )
10 eqid 2177 . . . . 5  |-  ( 1r
`  F )  =  ( 1r `  F
)
114, 5, 6, 7, 8, 9, 10lmodvsubval2 13437 . . . 4  |-  ( ( W  e.  LMod  /\  X  e.  V  /\  Y  e.  V )  ->  ( X  .-  Y )  =  ( X ( +g  `  W ) ( ( ( invg `  F ) `  ( 1r `  F ) ) 
.x.  Y ) ) )
121, 2, 3, 11syl3anc 1238 . . 3  |-  ( ph  ->  ( X  .-  Y
)  =  ( X ( +g  `  W
) ( ( ( invg `  F
) `  ( 1r `  F ) )  .x.  Y ) ) )
1312oveq2d 5893 . 2  |-  ( ph  ->  ( A  .x.  ( X  .-  Y ) )  =  ( A  .x.  ( X ( +g  `  W
) ( ( ( invg `  F
) `  ( 1r `  F ) )  .x.  Y ) ) ) )
14 lmodsubdi.k . . . . . . . 8  |-  K  =  ( Base `  F
)
15 eqid 2177 . . . . . . . 8  |-  ( .r
`  F )  =  ( .r `  F
)
167lmodring 13390 . . . . . . . . 9  |-  ( W  e.  LMod  ->  F  e. 
Ring )
171, 16syl 14 . . . . . . . 8  |-  ( ph  ->  F  e.  Ring )
18 lmodsubdi.a . . . . . . . 8  |-  ( ph  ->  A  e.  K )
1914, 15, 10, 9, 17, 18ringnegr 13234 . . . . . . 7  |-  ( ph  ->  ( A ( .r
`  F ) ( ( invg `  F ) `  ( 1r `  F ) ) )  =  ( ( invg `  F
) `  A )
)
2014, 15, 10, 9, 17, 18ringnegl 13233 . . . . . . 7  |-  ( ph  ->  ( ( ( invg `  F ) `
 ( 1r `  F ) ) ( .r `  F ) A )  =  ( ( invg `  F ) `  A
) )
2119, 20eqtr4d 2213 . . . . . 6  |-  ( ph  ->  ( A ( .r
`  F ) ( ( invg `  F ) `  ( 1r `  F ) ) )  =  ( ( ( invg `  F ) `  ( 1r `  F ) ) ( .r `  F
) A ) )
2221oveq1d 5892 . . . . 5  |-  ( ph  ->  ( ( A ( .r `  F ) ( ( invg `  F ) `  ( 1r `  F ) ) )  .x.  Y )  =  ( ( ( ( invg `  F ) `  ( 1r `  F ) ) ( .r `  F
) A )  .x.  Y ) )
23 ringgrp 13189 . . . . . . . 8  |-  ( F  e.  Ring  ->  F  e. 
Grp )
2417, 23syl 14 . . . . . . 7  |-  ( ph  ->  F  e.  Grp )
2514, 10ringidcl 13208 . . . . . . . 8  |-  ( F  e.  Ring  ->  ( 1r
`  F )  e.  K )
2617, 25syl 14 . . . . . . 7  |-  ( ph  ->  ( 1r `  F
)  e.  K )
2714, 9grpinvcl 12926 . . . . . . 7  |-  ( ( F  e.  Grp  /\  ( 1r `  F )  e.  K )  -> 
( ( invg `  F ) `  ( 1r `  F ) )  e.  K )
2824, 26, 27syl2anc 411 . . . . . 6  |-  ( ph  ->  ( ( invg `  F ) `  ( 1r `  F ) )  e.  K )
294, 7, 8, 14, 15lmodvsass 13408 . . . . . 6  |-  ( ( W  e.  LMod  /\  ( A  e.  K  /\  ( ( invg `  F ) `  ( 1r `  F ) )  e.  K  /\  Y  e.  V ) )  -> 
( ( A ( .r `  F ) ( ( invg `  F ) `  ( 1r `  F ) ) )  .x.  Y )  =  ( A  .x.  ( ( ( invg `  F ) `
 ( 1r `  F ) )  .x.  Y ) ) )
301, 18, 28, 3, 29syl13anc 1240 . . . . 5  |-  ( ph  ->  ( ( A ( .r `  F ) ( ( invg `  F ) `  ( 1r `  F ) ) )  .x.  Y )  =  ( A  .x.  ( ( ( invg `  F ) `
 ( 1r `  F ) )  .x.  Y ) ) )
314, 7, 8, 14, 15lmodvsass 13408 . . . . . 6  |-  ( ( W  e.  LMod  /\  (
( ( invg `  F ) `  ( 1r `  F ) )  e.  K  /\  A  e.  K  /\  Y  e.  V ) )  -> 
( ( ( ( invg `  F
) `  ( 1r `  F ) ) ( .r `  F ) A )  .x.  Y
)  =  ( ( ( invg `  F ) `  ( 1r `  F ) ) 
.x.  ( A  .x.  Y ) ) )
321, 28, 18, 3, 31syl13anc 1240 . . . . 5  |-  ( ph  ->  ( ( ( ( invg `  F
) `  ( 1r `  F ) ) ( .r `  F ) A )  .x.  Y
)  =  ( ( ( invg `  F ) `  ( 1r `  F ) ) 
.x.  ( A  .x.  Y ) ) )
3322, 30, 323eqtr3d 2218 . . . 4  |-  ( ph  ->  ( A  .x.  (
( ( invg `  F ) `  ( 1r `  F ) ) 
.x.  Y ) )  =  ( ( ( invg `  F
) `  ( 1r `  F ) )  .x.  ( A  .x.  Y ) ) )
3433oveq2d 5893 . . 3  |-  ( ph  ->  ( ( A  .x.  X ) ( +g  `  W ) ( A 
.x.  ( ( ( invg `  F
) `  ( 1r `  F ) )  .x.  Y ) ) )  =  ( ( A 
.x.  X ) ( +g  `  W ) ( ( ( invg `  F ) `
 ( 1r `  F ) )  .x.  ( A  .x.  Y ) ) ) )
354, 7, 8, 14lmodvscl 13400 . . . . 5  |-  ( ( W  e.  LMod  /\  (
( invg `  F ) `  ( 1r `  F ) )  e.  K  /\  Y  e.  V )  ->  (
( ( invg `  F ) `  ( 1r `  F ) ) 
.x.  Y )  e.  V )
361, 28, 3, 35syl3anc 1238 . . . 4  |-  ( ph  ->  ( ( ( invg `  F ) `
 ( 1r `  F ) )  .x.  Y )  e.  V
)
374, 5, 7, 8, 14lmodvsdi 13406 . . . 4  |-  ( ( W  e.  LMod  /\  ( A  e.  K  /\  X  e.  V  /\  ( ( ( invg `  F ) `
 ( 1r `  F ) )  .x.  Y )  e.  V
) )  ->  ( A  .x.  ( X ( +g  `  W ) ( ( ( invg `  F ) `
 ( 1r `  F ) )  .x.  Y ) ) )  =  ( ( A 
.x.  X ) ( +g  `  W ) ( A  .x.  (
( ( invg `  F ) `  ( 1r `  F ) ) 
.x.  Y ) ) ) )
381, 18, 2, 36, 37syl13anc 1240 . . 3  |-  ( ph  ->  ( A  .x.  ( X ( +g  `  W
) ( ( ( invg `  F
) `  ( 1r `  F ) )  .x.  Y ) ) )  =  ( ( A 
.x.  X ) ( +g  `  W ) ( A  .x.  (
( ( invg `  F ) `  ( 1r `  F ) ) 
.x.  Y ) ) ) )
394, 7, 8, 14lmodvscl 13400 . . . . 5  |-  ( ( W  e.  LMod  /\  A  e.  K  /\  X  e.  V )  ->  ( A  .x.  X )  e.  V )
401, 18, 2, 39syl3anc 1238 . . . 4  |-  ( ph  ->  ( A  .x.  X
)  e.  V )
414, 7, 8, 14lmodvscl 13400 . . . . 5  |-  ( ( W  e.  LMod  /\  A  e.  K  /\  Y  e.  V )  ->  ( A  .x.  Y )  e.  V )
421, 18, 3, 41syl3anc 1238 . . . 4  |-  ( ph  ->  ( A  .x.  Y
)  e.  V )
434, 5, 6, 7, 8, 9, 10lmodvsubval2 13437 . . . 4  |-  ( ( W  e.  LMod  /\  ( A  .x.  X )  e.  V  /\  ( A 
.x.  Y )  e.  V )  ->  (
( A  .x.  X
)  .-  ( A  .x.  Y ) )  =  ( ( A  .x.  X ) ( +g  `  W ) ( ( ( invg `  F ) `  ( 1r `  F ) ) 
.x.  ( A  .x.  Y ) ) ) )
441, 40, 42, 43syl3anc 1238 . . 3  |-  ( ph  ->  ( ( A  .x.  X )  .-  ( A  .x.  Y ) )  =  ( ( A 
.x.  X ) ( +g  `  W ) ( ( ( invg `  F ) `
 ( 1r `  F ) )  .x.  ( A  .x.  Y ) ) ) )
4534, 38, 443eqtr4rd 2221 . 2  |-  ( ph  ->  ( ( A  .x.  X )  .-  ( A  .x.  Y ) )  =  ( A  .x.  ( X ( +g  `  W
) ( ( ( invg `  F
) `  ( 1r `  F ) )  .x.  Y ) ) ) )
4613, 45eqtr4d 2213 1  |-  ( ph  ->  ( A  .x.  ( X  .-  Y ) )  =  ( ( A 
.x.  X )  .-  ( A  .x.  Y ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1353    e. wcel 2148   ` cfv 5218  (class class class)co 5877   Basecbs 12464   +g cplusg 12538   .rcmulr 12539  Scalarcsca 12541   .scvsca 12542   Grpcgrp 12882   invgcminusg 12883   -gcsg 12884   1rcur 13147   Ringcrg 13184   LModclmod 13382
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4120  ax-sep 4123  ax-pow 4176  ax-pr 4211  ax-un 4435  ax-setind 4538  ax-cnex 7904  ax-resscn 7905  ax-1cn 7906  ax-1re 7907  ax-icn 7908  ax-addcl 7909  ax-addrcl 7910  ax-mulcl 7911  ax-addcom 7913  ax-addass 7915  ax-i2m1 7918  ax-0lt1 7919  ax-0id 7921  ax-rnegex 7922  ax-pre-ltirr 7925  ax-pre-ltadd 7929
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rmo 2463  df-rab 2464  df-v 2741  df-sbc 2965  df-csb 3060  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-nul 3425  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-int 3847  df-iun 3890  df-br 4006  df-opab 4067  df-mpt 4068  df-id 4295  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-rn 4639  df-res 4640  df-ima 4641  df-iota 5180  df-fun 5220  df-fn 5221  df-f 5222  df-f1 5223  df-fo 5224  df-f1o 5225  df-fv 5226  df-riota 5833  df-ov 5880  df-oprab 5881  df-mpo 5882  df-1st 6143  df-2nd 6144  df-pnf 7996  df-mnf 7997  df-ltxr 7999  df-inn 8922  df-2 8980  df-3 8981  df-4 8982  df-5 8983  df-6 8984  df-ndx 12467  df-slot 12468  df-base 12470  df-sets 12471  df-plusg 12551  df-mulr 12552  df-sca 12554  df-vsca 12555  df-0g 12712  df-mgm 12780  df-sgrp 12813  df-mnd 12823  df-grp 12885  df-minusg 12886  df-sbg 12887  df-mgp 13136  df-ur 13148  df-ring 13186  df-lmod 13384
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator