ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lmodcom Unicode version

Theorem lmodcom 14291
Description: Left module vector sum is commutative. (Contributed by Gérard Lang, 25-Jun-2014.)
Hypotheses
Ref Expression
lmodcom.v  |-  V  =  ( Base `  W
)
lmodcom.a  |-  .+  =  ( +g  `  W )
Assertion
Ref Expression
lmodcom  |-  ( ( W  e.  LMod  /\  X  e.  V  /\  Y  e.  V )  ->  ( X  .+  Y )  =  ( Y  .+  X
) )

Proof of Theorem lmodcom
StepHypRef Expression
1 simp1 1021 . . . . . . . 8  |-  ( ( W  e.  LMod  /\  X  e.  V  /\  Y  e.  V )  ->  W  e.  LMod )
2 eqid 2229 . . . . . . . . . . 11  |-  (Scalar `  W )  =  (Scalar `  W )
3 eqid 2229 . . . . . . . . . . 11  |-  ( Base `  (Scalar `  W )
)  =  ( Base `  (Scalar `  W )
)
4 eqid 2229 . . . . . . . . . . 11  |-  ( 1r
`  (Scalar `  W )
)  =  ( 1r
`  (Scalar `  W )
)
52, 3, 4lmod1cl 14273 . . . . . . . . . 10  |-  ( W  e.  LMod  ->  ( 1r
`  (Scalar `  W )
)  e.  ( Base `  (Scalar `  W )
) )
61, 5syl 14 . . . . . . . . 9  |-  ( ( W  e.  LMod  /\  X  e.  V  /\  Y  e.  V )  ->  ( 1r `  (Scalar `  W
) )  e.  (
Base `  (Scalar `  W
) ) )
7 eqid 2229 . . . . . . . . . 10  |-  ( +g  `  (Scalar `  W )
)  =  ( +g  `  (Scalar `  W )
)
82, 3, 7lmodacl 14257 . . . . . . . . 9  |-  ( ( W  e.  LMod  /\  ( 1r `  (Scalar `  W
) )  e.  (
Base `  (Scalar `  W
) )  /\  ( 1r `  (Scalar `  W
) )  e.  (
Base `  (Scalar `  W
) ) )  -> 
( ( 1r `  (Scalar `  W ) ) ( +g  `  (Scalar `  W ) ) ( 1r `  (Scalar `  W ) ) )  e.  ( Base `  (Scalar `  W ) ) )
91, 6, 6, 8syl3anc 1271 . . . . . . . 8  |-  ( ( W  e.  LMod  /\  X  e.  V  /\  Y  e.  V )  ->  (
( 1r `  (Scalar `  W ) ) ( +g  `  (Scalar `  W ) ) ( 1r `  (Scalar `  W ) ) )  e.  ( Base `  (Scalar `  W ) ) )
10 simp2 1022 . . . . . . . 8  |-  ( ( W  e.  LMod  /\  X  e.  V  /\  Y  e.  V )  ->  X  e.  V )
11 simp3 1023 . . . . . . . 8  |-  ( ( W  e.  LMod  /\  X  e.  V  /\  Y  e.  V )  ->  Y  e.  V )
12 lmodcom.v . . . . . . . . 9  |-  V  =  ( Base `  W
)
13 lmodcom.a . . . . . . . . 9  |-  .+  =  ( +g  `  W )
14 eqid 2229 . . . . . . . . 9  |-  ( .s
`  W )  =  ( .s `  W
)
1512, 13, 2, 14, 3lmodvsdi 14269 . . . . . . . 8  |-  ( ( W  e.  LMod  /\  (
( ( 1r `  (Scalar `  W ) ) ( +g  `  (Scalar `  W ) ) ( 1r `  (Scalar `  W ) ) )  e.  ( Base `  (Scalar `  W ) )  /\  X  e.  V  /\  Y  e.  V )
)  ->  ( (
( 1r `  (Scalar `  W ) ) ( +g  `  (Scalar `  W ) ) ( 1r `  (Scalar `  W ) ) ) ( .s `  W
) ( X  .+  Y ) )  =  ( ( ( ( 1r `  (Scalar `  W ) ) ( +g  `  (Scalar `  W ) ) ( 1r `  (Scalar `  W ) ) ) ( .s `  W
) X )  .+  ( ( ( 1r
`  (Scalar `  W )
) ( +g  `  (Scalar `  W ) ) ( 1r `  (Scalar `  W ) ) ) ( .s `  W
) Y ) ) )
161, 9, 10, 11, 15syl13anc 1273 . . . . . . 7  |-  ( ( W  e.  LMod  /\  X  e.  V  /\  Y  e.  V )  ->  (
( ( 1r `  (Scalar `  W ) ) ( +g  `  (Scalar `  W ) ) ( 1r `  (Scalar `  W ) ) ) ( .s `  W
) ( X  .+  Y ) )  =  ( ( ( ( 1r `  (Scalar `  W ) ) ( +g  `  (Scalar `  W ) ) ( 1r `  (Scalar `  W ) ) ) ( .s `  W
) X )  .+  ( ( ( 1r
`  (Scalar `  W )
) ( +g  `  (Scalar `  W ) ) ( 1r `  (Scalar `  W ) ) ) ( .s `  W
) Y ) ) )
1712, 13lmodvacl 14260 . . . . . . . 8  |-  ( ( W  e.  LMod  /\  X  e.  V  /\  Y  e.  V )  ->  ( X  .+  Y )  e.  V )
1812, 13, 2, 14, 3, 7lmodvsdir 14270 . . . . . . . 8  |-  ( ( W  e.  LMod  /\  (
( 1r `  (Scalar `  W ) )  e.  ( Base `  (Scalar `  W ) )  /\  ( 1r `  (Scalar `  W ) )  e.  ( Base `  (Scalar `  W ) )  /\  ( X  .+  Y )  e.  V ) )  ->  ( ( ( 1r `  (Scalar `  W ) ) ( +g  `  (Scalar `  W ) ) ( 1r `  (Scalar `  W ) ) ) ( .s `  W
) ( X  .+  Y ) )  =  ( ( ( 1r
`  (Scalar `  W )
) ( .s `  W ) ( X 
.+  Y ) ) 
.+  ( ( 1r
`  (Scalar `  W )
) ( .s `  W ) ( X 
.+  Y ) ) ) )
191, 6, 6, 17, 18syl13anc 1273 . . . . . . 7  |-  ( ( W  e.  LMod  /\  X  e.  V  /\  Y  e.  V )  ->  (
( ( 1r `  (Scalar `  W ) ) ( +g  `  (Scalar `  W ) ) ( 1r `  (Scalar `  W ) ) ) ( .s `  W
) ( X  .+  Y ) )  =  ( ( ( 1r
`  (Scalar `  W )
) ( .s `  W ) ( X 
.+  Y ) ) 
.+  ( ( 1r
`  (Scalar `  W )
) ( .s `  W ) ( X 
.+  Y ) ) ) )
2016, 19eqtr3d 2264 . . . . . 6  |-  ( ( W  e.  LMod  /\  X  e.  V  /\  Y  e.  V )  ->  (
( ( ( 1r
`  (Scalar `  W )
) ( +g  `  (Scalar `  W ) ) ( 1r `  (Scalar `  W ) ) ) ( .s `  W
) X )  .+  ( ( ( 1r
`  (Scalar `  W )
) ( +g  `  (Scalar `  W ) ) ( 1r `  (Scalar `  W ) ) ) ( .s `  W
) Y ) )  =  ( ( ( 1r `  (Scalar `  W ) ) ( .s `  W ) ( X  .+  Y
) )  .+  (
( 1r `  (Scalar `  W ) ) ( .s `  W ) ( X  .+  Y
) ) ) )
2112, 13, 2, 14, 3, 7lmodvsdir 14270 . . . . . . . . 9  |-  ( ( W  e.  LMod  /\  (
( 1r `  (Scalar `  W ) )  e.  ( Base `  (Scalar `  W ) )  /\  ( 1r `  (Scalar `  W ) )  e.  ( Base `  (Scalar `  W ) )  /\  X  e.  V )
)  ->  ( (
( 1r `  (Scalar `  W ) ) ( +g  `  (Scalar `  W ) ) ( 1r `  (Scalar `  W ) ) ) ( .s `  W
) X )  =  ( ( ( 1r
`  (Scalar `  W )
) ( .s `  W ) X ) 
.+  ( ( 1r
`  (Scalar `  W )
) ( .s `  W ) X ) ) )
221, 6, 6, 10, 21syl13anc 1273 . . . . . . . 8  |-  ( ( W  e.  LMod  /\  X  e.  V  /\  Y  e.  V )  ->  (
( ( 1r `  (Scalar `  W ) ) ( +g  `  (Scalar `  W ) ) ( 1r `  (Scalar `  W ) ) ) ( .s `  W
) X )  =  ( ( ( 1r
`  (Scalar `  W )
) ( .s `  W ) X ) 
.+  ( ( 1r
`  (Scalar `  W )
) ( .s `  W ) X ) ) )
2312, 2, 14, 4lmodvs1 14274 . . . . . . . . . 10  |-  ( ( W  e.  LMod  /\  X  e.  V )  ->  (
( 1r `  (Scalar `  W ) ) ( .s `  W ) X )  =  X )
241, 10, 23syl2anc 411 . . . . . . . . 9  |-  ( ( W  e.  LMod  /\  X  e.  V  /\  Y  e.  V )  ->  (
( 1r `  (Scalar `  W ) ) ( .s `  W ) X )  =  X )
2524, 24oveq12d 6018 . . . . . . . 8  |-  ( ( W  e.  LMod  /\  X  e.  V  /\  Y  e.  V )  ->  (
( ( 1r `  (Scalar `  W ) ) ( .s `  W
) X )  .+  ( ( 1r `  (Scalar `  W ) ) ( .s `  W
) X ) )  =  ( X  .+  X ) )
2622, 25eqtrd 2262 . . . . . . 7  |-  ( ( W  e.  LMod  /\  X  e.  V  /\  Y  e.  V )  ->  (
( ( 1r `  (Scalar `  W ) ) ( +g  `  (Scalar `  W ) ) ( 1r `  (Scalar `  W ) ) ) ( .s `  W
) X )  =  ( X  .+  X
) )
2712, 13, 2, 14, 3, 7lmodvsdir 14270 . . . . . . . . 9  |-  ( ( W  e.  LMod  /\  (
( 1r `  (Scalar `  W ) )  e.  ( Base `  (Scalar `  W ) )  /\  ( 1r `  (Scalar `  W ) )  e.  ( Base `  (Scalar `  W ) )  /\  Y  e.  V )
)  ->  ( (
( 1r `  (Scalar `  W ) ) ( +g  `  (Scalar `  W ) ) ( 1r `  (Scalar `  W ) ) ) ( .s `  W
) Y )  =  ( ( ( 1r
`  (Scalar `  W )
) ( .s `  W ) Y ) 
.+  ( ( 1r
`  (Scalar `  W )
) ( .s `  W ) Y ) ) )
281, 6, 6, 11, 27syl13anc 1273 . . . . . . . 8  |-  ( ( W  e.  LMod  /\  X  e.  V  /\  Y  e.  V )  ->  (
( ( 1r `  (Scalar `  W ) ) ( +g  `  (Scalar `  W ) ) ( 1r `  (Scalar `  W ) ) ) ( .s `  W
) Y )  =  ( ( ( 1r
`  (Scalar `  W )
) ( .s `  W ) Y ) 
.+  ( ( 1r
`  (Scalar `  W )
) ( .s `  W ) Y ) ) )
2912, 2, 14, 4lmodvs1 14274 . . . . . . . . . 10  |-  ( ( W  e.  LMod  /\  Y  e.  V )  ->  (
( 1r `  (Scalar `  W ) ) ( .s `  W ) Y )  =  Y )
301, 11, 29syl2anc 411 . . . . . . . . 9  |-  ( ( W  e.  LMod  /\  X  e.  V  /\  Y  e.  V )  ->  (
( 1r `  (Scalar `  W ) ) ( .s `  W ) Y )  =  Y )
3130, 30oveq12d 6018 . . . . . . . 8  |-  ( ( W  e.  LMod  /\  X  e.  V  /\  Y  e.  V )  ->  (
( ( 1r `  (Scalar `  W ) ) ( .s `  W
) Y )  .+  ( ( 1r `  (Scalar `  W ) ) ( .s `  W
) Y ) )  =  ( Y  .+  Y ) )
3228, 31eqtrd 2262 . . . . . . 7  |-  ( ( W  e.  LMod  /\  X  e.  V  /\  Y  e.  V )  ->  (
( ( 1r `  (Scalar `  W ) ) ( +g  `  (Scalar `  W ) ) ( 1r `  (Scalar `  W ) ) ) ( .s `  W
) Y )  =  ( Y  .+  Y
) )
3326, 32oveq12d 6018 . . . . . 6  |-  ( ( W  e.  LMod  /\  X  e.  V  /\  Y  e.  V )  ->  (
( ( ( 1r
`  (Scalar `  W )
) ( +g  `  (Scalar `  W ) ) ( 1r `  (Scalar `  W ) ) ) ( .s `  W
) X )  .+  ( ( ( 1r
`  (Scalar `  W )
) ( +g  `  (Scalar `  W ) ) ( 1r `  (Scalar `  W ) ) ) ( .s `  W
) Y ) )  =  ( ( X 
.+  X )  .+  ( Y  .+  Y ) ) )
3412, 2, 14, 4lmodvs1 14274 . . . . . . . 8  |-  ( ( W  e.  LMod  /\  ( X  .+  Y )  e.  V )  ->  (
( 1r `  (Scalar `  W ) ) ( .s `  W ) ( X  .+  Y
) )  =  ( X  .+  Y ) )
351, 17, 34syl2anc 411 . . . . . . 7  |-  ( ( W  e.  LMod  /\  X  e.  V  /\  Y  e.  V )  ->  (
( 1r `  (Scalar `  W ) ) ( .s `  W ) ( X  .+  Y
) )  =  ( X  .+  Y ) )
3635, 35oveq12d 6018 . . . . . 6  |-  ( ( W  e.  LMod  /\  X  e.  V  /\  Y  e.  V )  ->  (
( ( 1r `  (Scalar `  W ) ) ( .s `  W
) ( X  .+  Y ) )  .+  ( ( 1r `  (Scalar `  W ) ) ( .s `  W
) ( X  .+  Y ) ) )  =  ( ( X 
.+  Y )  .+  ( X  .+  Y ) ) )
3720, 33, 363eqtr3d 2270 . . . . 5  |-  ( ( W  e.  LMod  /\  X  e.  V  /\  Y  e.  V )  ->  (
( X  .+  X
)  .+  ( Y  .+  Y ) )  =  ( ( X  .+  Y )  .+  ( X  .+  Y ) ) )
3812, 13lmodvacl 14260 . . . . . . 7  |-  ( ( W  e.  LMod  /\  X  e.  V  /\  X  e.  V )  ->  ( X  .+  X )  e.  V )
391, 10, 10, 38syl3anc 1271 . . . . . 6  |-  ( ( W  e.  LMod  /\  X  e.  V  /\  Y  e.  V )  ->  ( X  .+  X )  e.  V )
4012, 13lmodass 14261 . . . . . 6  |-  ( ( W  e.  LMod  /\  (
( X  .+  X
)  e.  V  /\  Y  e.  V  /\  Y  e.  V )
)  ->  ( (
( X  .+  X
)  .+  Y )  .+  Y )  =  ( ( X  .+  X
)  .+  ( Y  .+  Y ) ) )
411, 39, 11, 11, 40syl13anc 1273 . . . . 5  |-  ( ( W  e.  LMod  /\  X  e.  V  /\  Y  e.  V )  ->  (
( ( X  .+  X )  .+  Y
)  .+  Y )  =  ( ( X 
.+  X )  .+  ( Y  .+  Y ) ) )
4212, 13lmodass 14261 . . . . . 6  |-  ( ( W  e.  LMod  /\  (
( X  .+  Y
)  e.  V  /\  X  e.  V  /\  Y  e.  V )
)  ->  ( (
( X  .+  Y
)  .+  X )  .+  Y )  =  ( ( X  .+  Y
)  .+  ( X  .+  Y ) ) )
431, 17, 10, 11, 42syl13anc 1273 . . . . 5  |-  ( ( W  e.  LMod  /\  X  e.  V  /\  Y  e.  V )  ->  (
( ( X  .+  Y )  .+  X
)  .+  Y )  =  ( ( X 
.+  Y )  .+  ( X  .+  Y ) ) )
4437, 41, 433eqtr4d 2272 . . . 4  |-  ( ( W  e.  LMod  /\  X  e.  V  /\  Y  e.  V )  ->  (
( ( X  .+  X )  .+  Y
)  .+  Y )  =  ( ( ( X  .+  Y ) 
.+  X )  .+  Y ) )
45 lmodgrp 14252 . . . . . 6  |-  ( W  e.  LMod  ->  W  e. 
Grp )
461, 45syl 14 . . . . 5  |-  ( ( W  e.  LMod  /\  X  e.  V  /\  Y  e.  V )  ->  W  e.  Grp )
4712, 13lmodvacl 14260 . . . . . 6  |-  ( ( W  e.  LMod  /\  ( X  .+  X )  e.  V  /\  Y  e.  V )  ->  (
( X  .+  X
)  .+  Y )  e.  V )
481, 39, 11, 47syl3anc 1271 . . . . 5  |-  ( ( W  e.  LMod  /\  X  e.  V  /\  Y  e.  V )  ->  (
( X  .+  X
)  .+  Y )  e.  V )
4912, 13lmodvacl 14260 . . . . . 6  |-  ( ( W  e.  LMod  /\  ( X  .+  Y )  e.  V  /\  X  e.  V )  ->  (
( X  .+  Y
)  .+  X )  e.  V )
501, 17, 10, 49syl3anc 1271 . . . . 5  |-  ( ( W  e.  LMod  /\  X  e.  V  /\  Y  e.  V )  ->  (
( X  .+  Y
)  .+  X )  e.  V )
5112, 13grprcan 13565 . . . . 5  |-  ( ( W  e.  Grp  /\  ( ( ( X 
.+  X )  .+  Y )  e.  V  /\  ( ( X  .+  Y )  .+  X
)  e.  V  /\  Y  e.  V )
)  ->  ( (
( ( X  .+  X )  .+  Y
)  .+  Y )  =  ( ( ( X  .+  Y ) 
.+  X )  .+  Y )  <->  ( ( X  .+  X )  .+  Y )  =  ( ( X  .+  Y
)  .+  X )
) )
5246, 48, 50, 11, 51syl13anc 1273 . . . 4  |-  ( ( W  e.  LMod  /\  X  e.  V  /\  Y  e.  V )  ->  (
( ( ( X 
.+  X )  .+  Y )  .+  Y
)  =  ( ( ( X  .+  Y
)  .+  X )  .+  Y )  <->  ( ( X  .+  X )  .+  Y )  =  ( ( X  .+  Y
)  .+  X )
) )
5344, 52mpbid 147 . . 3  |-  ( ( W  e.  LMod  /\  X  e.  V  /\  Y  e.  V )  ->  (
( X  .+  X
)  .+  Y )  =  ( ( X 
.+  Y )  .+  X ) )
5412, 13lmodass 14261 . . . 4  |-  ( ( W  e.  LMod  /\  ( X  e.  V  /\  X  e.  V  /\  Y  e.  V )
)  ->  ( ( X  .+  X )  .+  Y )  =  ( X  .+  ( X 
.+  Y ) ) )
551, 10, 10, 11, 54syl13anc 1273 . . 3  |-  ( ( W  e.  LMod  /\  X  e.  V  /\  Y  e.  V )  ->  (
( X  .+  X
)  .+  Y )  =  ( X  .+  ( X  .+  Y ) ) )
5612, 13lmodass 14261 . . . 4  |-  ( ( W  e.  LMod  /\  ( X  e.  V  /\  Y  e.  V  /\  X  e.  V )
)  ->  ( ( X  .+  Y )  .+  X )  =  ( X  .+  ( Y 
.+  X ) ) )
571, 10, 11, 10, 56syl13anc 1273 . . 3  |-  ( ( W  e.  LMod  /\  X  e.  V  /\  Y  e.  V )  ->  (
( X  .+  Y
)  .+  X )  =  ( X  .+  ( Y  .+  X ) ) )
5853, 55, 573eqtr3d 2270 . 2  |-  ( ( W  e.  LMod  /\  X  e.  V  /\  Y  e.  V )  ->  ( X  .+  ( X  .+  Y ) )  =  ( X  .+  ( Y  .+  X ) ) )
5912, 13lmodvacl 14260 . . . 4  |-  ( ( W  e.  LMod  /\  Y  e.  V  /\  X  e.  V )  ->  ( Y  .+  X )  e.  V )
60593com23 1233 . . 3  |-  ( ( W  e.  LMod  /\  X  e.  V  /\  Y  e.  V )  ->  ( Y  .+  X )  e.  V )
6112, 13lmodlcan 14262 . . 3  |-  ( ( W  e.  LMod  /\  (
( X  .+  Y
)  e.  V  /\  ( Y  .+  X )  e.  V  /\  X  e.  V ) )  -> 
( ( X  .+  ( X  .+  Y ) )  =  ( X 
.+  ( Y  .+  X ) )  <->  ( X  .+  Y )  =  ( Y  .+  X ) ) )
621, 17, 60, 10, 61syl13anc 1273 . 2  |-  ( ( W  e.  LMod  /\  X  e.  V  /\  Y  e.  V )  ->  (
( X  .+  ( X  .+  Y ) )  =  ( X  .+  ( Y  .+  X ) )  <->  ( X  .+  Y )  =  ( Y  .+  X ) ) )
6358, 62mpbid 147 1  |-  ( ( W  e.  LMod  /\  X  e.  V  /\  Y  e.  V )  ->  ( X  .+  Y )  =  ( Y  .+  X
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105    /\ w3a 1002    = wceq 1395    e. wcel 2200   ` cfv 5317  (class class class)co 6000   Basecbs 13027   +g cplusg 13105  Scalarcsca 13108   .scvsca 13109   Grpcgrp 13528   1rcur 13917   LModclmod 14245
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4198  ax-sep 4201  ax-pow 4257  ax-pr 4292  ax-un 4523  ax-setind 4628  ax-cnex 8086  ax-resscn 8087  ax-1cn 8088  ax-1re 8089  ax-icn 8090  ax-addcl 8091  ax-addrcl 8092  ax-mulcl 8093  ax-addcom 8095  ax-addass 8097  ax-i2m1 8100  ax-0lt1 8101  ax-0id 8103  ax-rnegex 8104  ax-pre-ltirr 8107  ax-pre-ltadd 8111
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-iun 3966  df-br 4083  df-opab 4145  df-mpt 4146  df-id 4383  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-res 4730  df-ima 4731  df-iota 5277  df-fun 5319  df-fn 5320  df-f 5321  df-f1 5322  df-fo 5323  df-f1o 5324  df-fv 5325  df-riota 5953  df-ov 6003  df-oprab 6004  df-mpo 6005  df-pnf 8179  df-mnf 8180  df-ltxr 8182  df-inn 9107  df-2 9165  df-3 9166  df-4 9167  df-5 9168  df-6 9169  df-ndx 13030  df-slot 13031  df-base 13033  df-sets 13034  df-plusg 13118  df-mulr 13119  df-sca 13121  df-vsca 13122  df-0g 13286  df-mgm 13384  df-sgrp 13430  df-mnd 13445  df-grp 13531  df-minusg 13532  df-mgp 13879  df-ur 13918  df-ring 13956  df-lmod 14247
This theorem is referenced by:  lmodabl  14292  lssvsubcl  14324  lssvancl2  14326
  Copyright terms: Public domain W3C validator