ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lmodcom Unicode version

Theorem lmodcom 13889
Description: Left module vector sum is commutative. (Contributed by Gérard Lang, 25-Jun-2014.)
Hypotheses
Ref Expression
lmodcom.v  |-  V  =  ( Base `  W
)
lmodcom.a  |-  .+  =  ( +g  `  W )
Assertion
Ref Expression
lmodcom  |-  ( ( W  e.  LMod  /\  X  e.  V  /\  Y  e.  V )  ->  ( X  .+  Y )  =  ( Y  .+  X
) )

Proof of Theorem lmodcom
StepHypRef Expression
1 simp1 999 . . . . . . . 8  |-  ( ( W  e.  LMod  /\  X  e.  V  /\  Y  e.  V )  ->  W  e.  LMod )
2 eqid 2196 . . . . . . . . . . 11  |-  (Scalar `  W )  =  (Scalar `  W )
3 eqid 2196 . . . . . . . . . . 11  |-  ( Base `  (Scalar `  W )
)  =  ( Base `  (Scalar `  W )
)
4 eqid 2196 . . . . . . . . . . 11  |-  ( 1r
`  (Scalar `  W )
)  =  ( 1r
`  (Scalar `  W )
)
52, 3, 4lmod1cl 13871 . . . . . . . . . 10  |-  ( W  e.  LMod  ->  ( 1r
`  (Scalar `  W )
)  e.  ( Base `  (Scalar `  W )
) )
61, 5syl 14 . . . . . . . . 9  |-  ( ( W  e.  LMod  /\  X  e.  V  /\  Y  e.  V )  ->  ( 1r `  (Scalar `  W
) )  e.  (
Base `  (Scalar `  W
) ) )
7 eqid 2196 . . . . . . . . . 10  |-  ( +g  `  (Scalar `  W )
)  =  ( +g  `  (Scalar `  W )
)
82, 3, 7lmodacl 13855 . . . . . . . . 9  |-  ( ( W  e.  LMod  /\  ( 1r `  (Scalar `  W
) )  e.  (
Base `  (Scalar `  W
) )  /\  ( 1r `  (Scalar `  W
) )  e.  (
Base `  (Scalar `  W
) ) )  -> 
( ( 1r `  (Scalar `  W ) ) ( +g  `  (Scalar `  W ) ) ( 1r `  (Scalar `  W ) ) )  e.  ( Base `  (Scalar `  W ) ) )
91, 6, 6, 8syl3anc 1249 . . . . . . . 8  |-  ( ( W  e.  LMod  /\  X  e.  V  /\  Y  e.  V )  ->  (
( 1r `  (Scalar `  W ) ) ( +g  `  (Scalar `  W ) ) ( 1r `  (Scalar `  W ) ) )  e.  ( Base `  (Scalar `  W ) ) )
10 simp2 1000 . . . . . . . 8  |-  ( ( W  e.  LMod  /\  X  e.  V  /\  Y  e.  V )  ->  X  e.  V )
11 simp3 1001 . . . . . . . 8  |-  ( ( W  e.  LMod  /\  X  e.  V  /\  Y  e.  V )  ->  Y  e.  V )
12 lmodcom.v . . . . . . . . 9  |-  V  =  ( Base `  W
)
13 lmodcom.a . . . . . . . . 9  |-  .+  =  ( +g  `  W )
14 eqid 2196 . . . . . . . . 9  |-  ( .s
`  W )  =  ( .s `  W
)
1512, 13, 2, 14, 3lmodvsdi 13867 . . . . . . . 8  |-  ( ( W  e.  LMod  /\  (
( ( 1r `  (Scalar `  W ) ) ( +g  `  (Scalar `  W ) ) ( 1r `  (Scalar `  W ) ) )  e.  ( Base `  (Scalar `  W ) )  /\  X  e.  V  /\  Y  e.  V )
)  ->  ( (
( 1r `  (Scalar `  W ) ) ( +g  `  (Scalar `  W ) ) ( 1r `  (Scalar `  W ) ) ) ( .s `  W
) ( X  .+  Y ) )  =  ( ( ( ( 1r `  (Scalar `  W ) ) ( +g  `  (Scalar `  W ) ) ( 1r `  (Scalar `  W ) ) ) ( .s `  W
) X )  .+  ( ( ( 1r
`  (Scalar `  W )
) ( +g  `  (Scalar `  W ) ) ( 1r `  (Scalar `  W ) ) ) ( .s `  W
) Y ) ) )
161, 9, 10, 11, 15syl13anc 1251 . . . . . . 7  |-  ( ( W  e.  LMod  /\  X  e.  V  /\  Y  e.  V )  ->  (
( ( 1r `  (Scalar `  W ) ) ( +g  `  (Scalar `  W ) ) ( 1r `  (Scalar `  W ) ) ) ( .s `  W
) ( X  .+  Y ) )  =  ( ( ( ( 1r `  (Scalar `  W ) ) ( +g  `  (Scalar `  W ) ) ( 1r `  (Scalar `  W ) ) ) ( .s `  W
) X )  .+  ( ( ( 1r
`  (Scalar `  W )
) ( +g  `  (Scalar `  W ) ) ( 1r `  (Scalar `  W ) ) ) ( .s `  W
) Y ) ) )
1712, 13lmodvacl 13858 . . . . . . . 8  |-  ( ( W  e.  LMod  /\  X  e.  V  /\  Y  e.  V )  ->  ( X  .+  Y )  e.  V )
1812, 13, 2, 14, 3, 7lmodvsdir 13868 . . . . . . . 8  |-  ( ( W  e.  LMod  /\  (
( 1r `  (Scalar `  W ) )  e.  ( Base `  (Scalar `  W ) )  /\  ( 1r `  (Scalar `  W ) )  e.  ( Base `  (Scalar `  W ) )  /\  ( X  .+  Y )  e.  V ) )  ->  ( ( ( 1r `  (Scalar `  W ) ) ( +g  `  (Scalar `  W ) ) ( 1r `  (Scalar `  W ) ) ) ( .s `  W
) ( X  .+  Y ) )  =  ( ( ( 1r
`  (Scalar `  W )
) ( .s `  W ) ( X 
.+  Y ) ) 
.+  ( ( 1r
`  (Scalar `  W )
) ( .s `  W ) ( X 
.+  Y ) ) ) )
191, 6, 6, 17, 18syl13anc 1251 . . . . . . 7  |-  ( ( W  e.  LMod  /\  X  e.  V  /\  Y  e.  V )  ->  (
( ( 1r `  (Scalar `  W ) ) ( +g  `  (Scalar `  W ) ) ( 1r `  (Scalar `  W ) ) ) ( .s `  W
) ( X  .+  Y ) )  =  ( ( ( 1r
`  (Scalar `  W )
) ( .s `  W ) ( X 
.+  Y ) ) 
.+  ( ( 1r
`  (Scalar `  W )
) ( .s `  W ) ( X 
.+  Y ) ) ) )
2016, 19eqtr3d 2231 . . . . . 6  |-  ( ( W  e.  LMod  /\  X  e.  V  /\  Y  e.  V )  ->  (
( ( ( 1r
`  (Scalar `  W )
) ( +g  `  (Scalar `  W ) ) ( 1r `  (Scalar `  W ) ) ) ( .s `  W
) X )  .+  ( ( ( 1r
`  (Scalar `  W )
) ( +g  `  (Scalar `  W ) ) ( 1r `  (Scalar `  W ) ) ) ( .s `  W
) Y ) )  =  ( ( ( 1r `  (Scalar `  W ) ) ( .s `  W ) ( X  .+  Y
) )  .+  (
( 1r `  (Scalar `  W ) ) ( .s `  W ) ( X  .+  Y
) ) ) )
2112, 13, 2, 14, 3, 7lmodvsdir 13868 . . . . . . . . 9  |-  ( ( W  e.  LMod  /\  (
( 1r `  (Scalar `  W ) )  e.  ( Base `  (Scalar `  W ) )  /\  ( 1r `  (Scalar `  W ) )  e.  ( Base `  (Scalar `  W ) )  /\  X  e.  V )
)  ->  ( (
( 1r `  (Scalar `  W ) ) ( +g  `  (Scalar `  W ) ) ( 1r `  (Scalar `  W ) ) ) ( .s `  W
) X )  =  ( ( ( 1r
`  (Scalar `  W )
) ( .s `  W ) X ) 
.+  ( ( 1r
`  (Scalar `  W )
) ( .s `  W ) X ) ) )
221, 6, 6, 10, 21syl13anc 1251 . . . . . . . 8  |-  ( ( W  e.  LMod  /\  X  e.  V  /\  Y  e.  V )  ->  (
( ( 1r `  (Scalar `  W ) ) ( +g  `  (Scalar `  W ) ) ( 1r `  (Scalar `  W ) ) ) ( .s `  W
) X )  =  ( ( ( 1r
`  (Scalar `  W )
) ( .s `  W ) X ) 
.+  ( ( 1r
`  (Scalar `  W )
) ( .s `  W ) X ) ) )
2312, 2, 14, 4lmodvs1 13872 . . . . . . . . . 10  |-  ( ( W  e.  LMod  /\  X  e.  V )  ->  (
( 1r `  (Scalar `  W ) ) ( .s `  W ) X )  =  X )
241, 10, 23syl2anc 411 . . . . . . . . 9  |-  ( ( W  e.  LMod  /\  X  e.  V  /\  Y  e.  V )  ->  (
( 1r `  (Scalar `  W ) ) ( .s `  W ) X )  =  X )
2524, 24oveq12d 5940 . . . . . . . 8  |-  ( ( W  e.  LMod  /\  X  e.  V  /\  Y  e.  V )  ->  (
( ( 1r `  (Scalar `  W ) ) ( .s `  W
) X )  .+  ( ( 1r `  (Scalar `  W ) ) ( .s `  W
) X ) )  =  ( X  .+  X ) )
2622, 25eqtrd 2229 . . . . . . 7  |-  ( ( W  e.  LMod  /\  X  e.  V  /\  Y  e.  V )  ->  (
( ( 1r `  (Scalar `  W ) ) ( +g  `  (Scalar `  W ) ) ( 1r `  (Scalar `  W ) ) ) ( .s `  W
) X )  =  ( X  .+  X
) )
2712, 13, 2, 14, 3, 7lmodvsdir 13868 . . . . . . . . 9  |-  ( ( W  e.  LMod  /\  (
( 1r `  (Scalar `  W ) )  e.  ( Base `  (Scalar `  W ) )  /\  ( 1r `  (Scalar `  W ) )  e.  ( Base `  (Scalar `  W ) )  /\  Y  e.  V )
)  ->  ( (
( 1r `  (Scalar `  W ) ) ( +g  `  (Scalar `  W ) ) ( 1r `  (Scalar `  W ) ) ) ( .s `  W
) Y )  =  ( ( ( 1r
`  (Scalar `  W )
) ( .s `  W ) Y ) 
.+  ( ( 1r
`  (Scalar `  W )
) ( .s `  W ) Y ) ) )
281, 6, 6, 11, 27syl13anc 1251 . . . . . . . 8  |-  ( ( W  e.  LMod  /\  X  e.  V  /\  Y  e.  V )  ->  (
( ( 1r `  (Scalar `  W ) ) ( +g  `  (Scalar `  W ) ) ( 1r `  (Scalar `  W ) ) ) ( .s `  W
) Y )  =  ( ( ( 1r
`  (Scalar `  W )
) ( .s `  W ) Y ) 
.+  ( ( 1r
`  (Scalar `  W )
) ( .s `  W ) Y ) ) )
2912, 2, 14, 4lmodvs1 13872 . . . . . . . . . 10  |-  ( ( W  e.  LMod  /\  Y  e.  V )  ->  (
( 1r `  (Scalar `  W ) ) ( .s `  W ) Y )  =  Y )
301, 11, 29syl2anc 411 . . . . . . . . 9  |-  ( ( W  e.  LMod  /\  X  e.  V  /\  Y  e.  V )  ->  (
( 1r `  (Scalar `  W ) ) ( .s `  W ) Y )  =  Y )
3130, 30oveq12d 5940 . . . . . . . 8  |-  ( ( W  e.  LMod  /\  X  e.  V  /\  Y  e.  V )  ->  (
( ( 1r `  (Scalar `  W ) ) ( .s `  W
) Y )  .+  ( ( 1r `  (Scalar `  W ) ) ( .s `  W
) Y ) )  =  ( Y  .+  Y ) )
3228, 31eqtrd 2229 . . . . . . 7  |-  ( ( W  e.  LMod  /\  X  e.  V  /\  Y  e.  V )  ->  (
( ( 1r `  (Scalar `  W ) ) ( +g  `  (Scalar `  W ) ) ( 1r `  (Scalar `  W ) ) ) ( .s `  W
) Y )  =  ( Y  .+  Y
) )
3326, 32oveq12d 5940 . . . . . 6  |-  ( ( W  e.  LMod  /\  X  e.  V  /\  Y  e.  V )  ->  (
( ( ( 1r
`  (Scalar `  W )
) ( +g  `  (Scalar `  W ) ) ( 1r `  (Scalar `  W ) ) ) ( .s `  W
) X )  .+  ( ( ( 1r
`  (Scalar `  W )
) ( +g  `  (Scalar `  W ) ) ( 1r `  (Scalar `  W ) ) ) ( .s `  W
) Y ) )  =  ( ( X 
.+  X )  .+  ( Y  .+  Y ) ) )
3412, 2, 14, 4lmodvs1 13872 . . . . . . . 8  |-  ( ( W  e.  LMod  /\  ( X  .+  Y )  e.  V )  ->  (
( 1r `  (Scalar `  W ) ) ( .s `  W ) ( X  .+  Y
) )  =  ( X  .+  Y ) )
351, 17, 34syl2anc 411 . . . . . . 7  |-  ( ( W  e.  LMod  /\  X  e.  V  /\  Y  e.  V )  ->  (
( 1r `  (Scalar `  W ) ) ( .s `  W ) ( X  .+  Y
) )  =  ( X  .+  Y ) )
3635, 35oveq12d 5940 . . . . . 6  |-  ( ( W  e.  LMod  /\  X  e.  V  /\  Y  e.  V )  ->  (
( ( 1r `  (Scalar `  W ) ) ( .s `  W
) ( X  .+  Y ) )  .+  ( ( 1r `  (Scalar `  W ) ) ( .s `  W
) ( X  .+  Y ) ) )  =  ( ( X 
.+  Y )  .+  ( X  .+  Y ) ) )
3720, 33, 363eqtr3d 2237 . . . . 5  |-  ( ( W  e.  LMod  /\  X  e.  V  /\  Y  e.  V )  ->  (
( X  .+  X
)  .+  ( Y  .+  Y ) )  =  ( ( X  .+  Y )  .+  ( X  .+  Y ) ) )
3812, 13lmodvacl 13858 . . . . . . 7  |-  ( ( W  e.  LMod  /\  X  e.  V  /\  X  e.  V )  ->  ( X  .+  X )  e.  V )
391, 10, 10, 38syl3anc 1249 . . . . . 6  |-  ( ( W  e.  LMod  /\  X  e.  V  /\  Y  e.  V )  ->  ( X  .+  X )  e.  V )
4012, 13lmodass 13859 . . . . . 6  |-  ( ( W  e.  LMod  /\  (
( X  .+  X
)  e.  V  /\  Y  e.  V  /\  Y  e.  V )
)  ->  ( (
( X  .+  X
)  .+  Y )  .+  Y )  =  ( ( X  .+  X
)  .+  ( Y  .+  Y ) ) )
411, 39, 11, 11, 40syl13anc 1251 . . . . 5  |-  ( ( W  e.  LMod  /\  X  e.  V  /\  Y  e.  V )  ->  (
( ( X  .+  X )  .+  Y
)  .+  Y )  =  ( ( X 
.+  X )  .+  ( Y  .+  Y ) ) )
4212, 13lmodass 13859 . . . . . 6  |-  ( ( W  e.  LMod  /\  (
( X  .+  Y
)  e.  V  /\  X  e.  V  /\  Y  e.  V )
)  ->  ( (
( X  .+  Y
)  .+  X )  .+  Y )  =  ( ( X  .+  Y
)  .+  ( X  .+  Y ) ) )
431, 17, 10, 11, 42syl13anc 1251 . . . . 5  |-  ( ( W  e.  LMod  /\  X  e.  V  /\  Y  e.  V )  ->  (
( ( X  .+  Y )  .+  X
)  .+  Y )  =  ( ( X 
.+  Y )  .+  ( X  .+  Y ) ) )
4437, 41, 433eqtr4d 2239 . . . 4  |-  ( ( W  e.  LMod  /\  X  e.  V  /\  Y  e.  V )  ->  (
( ( X  .+  X )  .+  Y
)  .+  Y )  =  ( ( ( X  .+  Y ) 
.+  X )  .+  Y ) )
45 lmodgrp 13850 . . . . . 6  |-  ( W  e.  LMod  ->  W  e. 
Grp )
461, 45syl 14 . . . . 5  |-  ( ( W  e.  LMod  /\  X  e.  V  /\  Y  e.  V )  ->  W  e.  Grp )
4712, 13lmodvacl 13858 . . . . . 6  |-  ( ( W  e.  LMod  /\  ( X  .+  X )  e.  V  /\  Y  e.  V )  ->  (
( X  .+  X
)  .+  Y )  e.  V )
481, 39, 11, 47syl3anc 1249 . . . . 5  |-  ( ( W  e.  LMod  /\  X  e.  V  /\  Y  e.  V )  ->  (
( X  .+  X
)  .+  Y )  e.  V )
4912, 13lmodvacl 13858 . . . . . 6  |-  ( ( W  e.  LMod  /\  ( X  .+  Y )  e.  V  /\  X  e.  V )  ->  (
( X  .+  Y
)  .+  X )  e.  V )
501, 17, 10, 49syl3anc 1249 . . . . 5  |-  ( ( W  e.  LMod  /\  X  e.  V  /\  Y  e.  V )  ->  (
( X  .+  Y
)  .+  X )  e.  V )
5112, 13grprcan 13169 . . . . 5  |-  ( ( W  e.  Grp  /\  ( ( ( X 
.+  X )  .+  Y )  e.  V  /\  ( ( X  .+  Y )  .+  X
)  e.  V  /\  Y  e.  V )
)  ->  ( (
( ( X  .+  X )  .+  Y
)  .+  Y )  =  ( ( ( X  .+  Y ) 
.+  X )  .+  Y )  <->  ( ( X  .+  X )  .+  Y )  =  ( ( X  .+  Y
)  .+  X )
) )
5246, 48, 50, 11, 51syl13anc 1251 . . . 4  |-  ( ( W  e.  LMod  /\  X  e.  V  /\  Y  e.  V )  ->  (
( ( ( X 
.+  X )  .+  Y )  .+  Y
)  =  ( ( ( X  .+  Y
)  .+  X )  .+  Y )  <->  ( ( X  .+  X )  .+  Y )  =  ( ( X  .+  Y
)  .+  X )
) )
5344, 52mpbid 147 . . 3  |-  ( ( W  e.  LMod  /\  X  e.  V  /\  Y  e.  V )  ->  (
( X  .+  X
)  .+  Y )  =  ( ( X 
.+  Y )  .+  X ) )
5412, 13lmodass 13859 . . . 4  |-  ( ( W  e.  LMod  /\  ( X  e.  V  /\  X  e.  V  /\  Y  e.  V )
)  ->  ( ( X  .+  X )  .+  Y )  =  ( X  .+  ( X 
.+  Y ) ) )
551, 10, 10, 11, 54syl13anc 1251 . . 3  |-  ( ( W  e.  LMod  /\  X  e.  V  /\  Y  e.  V )  ->  (
( X  .+  X
)  .+  Y )  =  ( X  .+  ( X  .+  Y ) ) )
5612, 13lmodass 13859 . . . 4  |-  ( ( W  e.  LMod  /\  ( X  e.  V  /\  Y  e.  V  /\  X  e.  V )
)  ->  ( ( X  .+  Y )  .+  X )  =  ( X  .+  ( Y 
.+  X ) ) )
571, 10, 11, 10, 56syl13anc 1251 . . 3  |-  ( ( W  e.  LMod  /\  X  e.  V  /\  Y  e.  V )  ->  (
( X  .+  Y
)  .+  X )  =  ( X  .+  ( Y  .+  X ) ) )
5853, 55, 573eqtr3d 2237 . 2  |-  ( ( W  e.  LMod  /\  X  e.  V  /\  Y  e.  V )  ->  ( X  .+  ( X  .+  Y ) )  =  ( X  .+  ( Y  .+  X ) ) )
5912, 13lmodvacl 13858 . . . 4  |-  ( ( W  e.  LMod  /\  Y  e.  V  /\  X  e.  V )  ->  ( Y  .+  X )  e.  V )
60593com23 1211 . . 3  |-  ( ( W  e.  LMod  /\  X  e.  V  /\  Y  e.  V )  ->  ( Y  .+  X )  e.  V )
6112, 13lmodlcan 13860 . . 3  |-  ( ( W  e.  LMod  /\  (
( X  .+  Y
)  e.  V  /\  ( Y  .+  X )  e.  V  /\  X  e.  V ) )  -> 
( ( X  .+  ( X  .+  Y ) )  =  ( X 
.+  ( Y  .+  X ) )  <->  ( X  .+  Y )  =  ( Y  .+  X ) ) )
621, 17, 60, 10, 61syl13anc 1251 . 2  |-  ( ( W  e.  LMod  /\  X  e.  V  /\  Y  e.  V )  ->  (
( X  .+  ( X  .+  Y ) )  =  ( X  .+  ( Y  .+  X ) )  <->  ( X  .+  Y )  =  ( Y  .+  X ) ) )
6358, 62mpbid 147 1  |-  ( ( W  e.  LMod  /\  X  e.  V  /\  Y  e.  V )  ->  ( X  .+  Y )  =  ( Y  .+  X
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105    /\ w3a 980    = wceq 1364    e. wcel 2167   ` cfv 5258  (class class class)co 5922   Basecbs 12678   +g cplusg 12755  Scalarcsca 12758   .scvsca 12759   Grpcgrp 13132   1rcur 13515   LModclmod 13843
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4148  ax-sep 4151  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-cnex 7970  ax-resscn 7971  ax-1cn 7972  ax-1re 7973  ax-icn 7974  ax-addcl 7975  ax-addrcl 7976  ax-mulcl 7977  ax-addcom 7979  ax-addass 7981  ax-i2m1 7984  ax-0lt1 7985  ax-0id 7987  ax-rnegex 7988  ax-pre-ltirr 7991  ax-pre-ltadd 7995
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-id 4328  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-riota 5877  df-ov 5925  df-oprab 5926  df-mpo 5927  df-pnf 8063  df-mnf 8064  df-ltxr 8066  df-inn 8991  df-2 9049  df-3 9050  df-4 9051  df-5 9052  df-6 9053  df-ndx 12681  df-slot 12682  df-base 12684  df-sets 12685  df-plusg 12768  df-mulr 12769  df-sca 12771  df-vsca 12772  df-0g 12929  df-mgm 12999  df-sgrp 13045  df-mnd 13058  df-grp 13135  df-minusg 13136  df-mgp 13477  df-ur 13516  df-ring 13554  df-lmod 13845
This theorem is referenced by:  lmodabl  13890  lssvsubcl  13922  lssvancl2  13924
  Copyright terms: Public domain W3C validator