ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lmodcom Unicode version

Theorem lmodcom 13522
Description: Left module vector sum is commutative. (Contributed by Gérard Lang, 25-Jun-2014.)
Hypotheses
Ref Expression
lmodcom.v  |-  V  =  ( Base `  W
)
lmodcom.a  |-  .+  =  ( +g  `  W )
Assertion
Ref Expression
lmodcom  |-  ( ( W  e.  LMod  /\  X  e.  V  /\  Y  e.  V )  ->  ( X  .+  Y )  =  ( Y  .+  X
) )

Proof of Theorem lmodcom
StepHypRef Expression
1 simp1 998 . . . . . . . 8  |-  ( ( W  e.  LMod  /\  X  e.  V  /\  Y  e.  V )  ->  W  e.  LMod )
2 eqid 2187 . . . . . . . . . . 11  |-  (Scalar `  W )  =  (Scalar `  W )
3 eqid 2187 . . . . . . . . . . 11  |-  ( Base `  (Scalar `  W )
)  =  ( Base `  (Scalar `  W )
)
4 eqid 2187 . . . . . . . . . . 11  |-  ( 1r
`  (Scalar `  W )
)  =  ( 1r
`  (Scalar `  W )
)
52, 3, 4lmod1cl 13504 . . . . . . . . . 10  |-  ( W  e.  LMod  ->  ( 1r
`  (Scalar `  W )
)  e.  ( Base `  (Scalar `  W )
) )
61, 5syl 14 . . . . . . . . 9  |-  ( ( W  e.  LMod  /\  X  e.  V  /\  Y  e.  V )  ->  ( 1r `  (Scalar `  W
) )  e.  (
Base `  (Scalar `  W
) ) )
7 eqid 2187 . . . . . . . . . 10  |-  ( +g  `  (Scalar `  W )
)  =  ( +g  `  (Scalar `  W )
)
82, 3, 7lmodacl 13488 . . . . . . . . 9  |-  ( ( W  e.  LMod  /\  ( 1r `  (Scalar `  W
) )  e.  (
Base `  (Scalar `  W
) )  /\  ( 1r `  (Scalar `  W
) )  e.  (
Base `  (Scalar `  W
) ) )  -> 
( ( 1r `  (Scalar `  W ) ) ( +g  `  (Scalar `  W ) ) ( 1r `  (Scalar `  W ) ) )  e.  ( Base `  (Scalar `  W ) ) )
91, 6, 6, 8syl3anc 1248 . . . . . . . 8  |-  ( ( W  e.  LMod  /\  X  e.  V  /\  Y  e.  V )  ->  (
( 1r `  (Scalar `  W ) ) ( +g  `  (Scalar `  W ) ) ( 1r `  (Scalar `  W ) ) )  e.  ( Base `  (Scalar `  W ) ) )
10 simp2 999 . . . . . . . 8  |-  ( ( W  e.  LMod  /\  X  e.  V  /\  Y  e.  V )  ->  X  e.  V )
11 simp3 1000 . . . . . . . 8  |-  ( ( W  e.  LMod  /\  X  e.  V  /\  Y  e.  V )  ->  Y  e.  V )
12 lmodcom.v . . . . . . . . 9  |-  V  =  ( Base `  W
)
13 lmodcom.a . . . . . . . . 9  |-  .+  =  ( +g  `  W )
14 eqid 2187 . . . . . . . . 9  |-  ( .s
`  W )  =  ( .s `  W
)
1512, 13, 2, 14, 3lmodvsdi 13500 . . . . . . . 8  |-  ( ( W  e.  LMod  /\  (
( ( 1r `  (Scalar `  W ) ) ( +g  `  (Scalar `  W ) ) ( 1r `  (Scalar `  W ) ) )  e.  ( Base `  (Scalar `  W ) )  /\  X  e.  V  /\  Y  e.  V )
)  ->  ( (
( 1r `  (Scalar `  W ) ) ( +g  `  (Scalar `  W ) ) ( 1r `  (Scalar `  W ) ) ) ( .s `  W
) ( X  .+  Y ) )  =  ( ( ( ( 1r `  (Scalar `  W ) ) ( +g  `  (Scalar `  W ) ) ( 1r `  (Scalar `  W ) ) ) ( .s `  W
) X )  .+  ( ( ( 1r
`  (Scalar `  W )
) ( +g  `  (Scalar `  W ) ) ( 1r `  (Scalar `  W ) ) ) ( .s `  W
) Y ) ) )
161, 9, 10, 11, 15syl13anc 1250 . . . . . . 7  |-  ( ( W  e.  LMod  /\  X  e.  V  /\  Y  e.  V )  ->  (
( ( 1r `  (Scalar `  W ) ) ( +g  `  (Scalar `  W ) ) ( 1r `  (Scalar `  W ) ) ) ( .s `  W
) ( X  .+  Y ) )  =  ( ( ( ( 1r `  (Scalar `  W ) ) ( +g  `  (Scalar `  W ) ) ( 1r `  (Scalar `  W ) ) ) ( .s `  W
) X )  .+  ( ( ( 1r
`  (Scalar `  W )
) ( +g  `  (Scalar `  W ) ) ( 1r `  (Scalar `  W ) ) ) ( .s `  W
) Y ) ) )
1712, 13lmodvacl 13491 . . . . . . . 8  |-  ( ( W  e.  LMod  /\  X  e.  V  /\  Y  e.  V )  ->  ( X  .+  Y )  e.  V )
1812, 13, 2, 14, 3, 7lmodvsdir 13501 . . . . . . . 8  |-  ( ( W  e.  LMod  /\  (
( 1r `  (Scalar `  W ) )  e.  ( Base `  (Scalar `  W ) )  /\  ( 1r `  (Scalar `  W ) )  e.  ( Base `  (Scalar `  W ) )  /\  ( X  .+  Y )  e.  V ) )  ->  ( ( ( 1r `  (Scalar `  W ) ) ( +g  `  (Scalar `  W ) ) ( 1r `  (Scalar `  W ) ) ) ( .s `  W
) ( X  .+  Y ) )  =  ( ( ( 1r
`  (Scalar `  W )
) ( .s `  W ) ( X 
.+  Y ) ) 
.+  ( ( 1r
`  (Scalar `  W )
) ( .s `  W ) ( X 
.+  Y ) ) ) )
191, 6, 6, 17, 18syl13anc 1250 . . . . . . 7  |-  ( ( W  e.  LMod  /\  X  e.  V  /\  Y  e.  V )  ->  (
( ( 1r `  (Scalar `  W ) ) ( +g  `  (Scalar `  W ) ) ( 1r `  (Scalar `  W ) ) ) ( .s `  W
) ( X  .+  Y ) )  =  ( ( ( 1r
`  (Scalar `  W )
) ( .s `  W ) ( X 
.+  Y ) ) 
.+  ( ( 1r
`  (Scalar `  W )
) ( .s `  W ) ( X 
.+  Y ) ) ) )
2016, 19eqtr3d 2222 . . . . . 6  |-  ( ( W  e.  LMod  /\  X  e.  V  /\  Y  e.  V )  ->  (
( ( ( 1r
`  (Scalar `  W )
) ( +g  `  (Scalar `  W ) ) ( 1r `  (Scalar `  W ) ) ) ( .s `  W
) X )  .+  ( ( ( 1r
`  (Scalar `  W )
) ( +g  `  (Scalar `  W ) ) ( 1r `  (Scalar `  W ) ) ) ( .s `  W
) Y ) )  =  ( ( ( 1r `  (Scalar `  W ) ) ( .s `  W ) ( X  .+  Y
) )  .+  (
( 1r `  (Scalar `  W ) ) ( .s `  W ) ( X  .+  Y
) ) ) )
2112, 13, 2, 14, 3, 7lmodvsdir 13501 . . . . . . . . 9  |-  ( ( W  e.  LMod  /\  (
( 1r `  (Scalar `  W ) )  e.  ( Base `  (Scalar `  W ) )  /\  ( 1r `  (Scalar `  W ) )  e.  ( Base `  (Scalar `  W ) )  /\  X  e.  V )
)  ->  ( (
( 1r `  (Scalar `  W ) ) ( +g  `  (Scalar `  W ) ) ( 1r `  (Scalar `  W ) ) ) ( .s `  W
) X )  =  ( ( ( 1r
`  (Scalar `  W )
) ( .s `  W ) X ) 
.+  ( ( 1r
`  (Scalar `  W )
) ( .s `  W ) X ) ) )
221, 6, 6, 10, 21syl13anc 1250 . . . . . . . 8  |-  ( ( W  e.  LMod  /\  X  e.  V  /\  Y  e.  V )  ->  (
( ( 1r `  (Scalar `  W ) ) ( +g  `  (Scalar `  W ) ) ( 1r `  (Scalar `  W ) ) ) ( .s `  W
) X )  =  ( ( ( 1r
`  (Scalar `  W )
) ( .s `  W ) X ) 
.+  ( ( 1r
`  (Scalar `  W )
) ( .s `  W ) X ) ) )
2312, 2, 14, 4lmodvs1 13505 . . . . . . . . . 10  |-  ( ( W  e.  LMod  /\  X  e.  V )  ->  (
( 1r `  (Scalar `  W ) ) ( .s `  W ) X )  =  X )
241, 10, 23syl2anc 411 . . . . . . . . 9  |-  ( ( W  e.  LMod  /\  X  e.  V  /\  Y  e.  V )  ->  (
( 1r `  (Scalar `  W ) ) ( .s `  W ) X )  =  X )
2524, 24oveq12d 5906 . . . . . . . 8  |-  ( ( W  e.  LMod  /\  X  e.  V  /\  Y  e.  V )  ->  (
( ( 1r `  (Scalar `  W ) ) ( .s `  W
) X )  .+  ( ( 1r `  (Scalar `  W ) ) ( .s `  W
) X ) )  =  ( X  .+  X ) )
2622, 25eqtrd 2220 . . . . . . 7  |-  ( ( W  e.  LMod  /\  X  e.  V  /\  Y  e.  V )  ->  (
( ( 1r `  (Scalar `  W ) ) ( +g  `  (Scalar `  W ) ) ( 1r `  (Scalar `  W ) ) ) ( .s `  W
) X )  =  ( X  .+  X
) )
2712, 13, 2, 14, 3, 7lmodvsdir 13501 . . . . . . . . 9  |-  ( ( W  e.  LMod  /\  (
( 1r `  (Scalar `  W ) )  e.  ( Base `  (Scalar `  W ) )  /\  ( 1r `  (Scalar `  W ) )  e.  ( Base `  (Scalar `  W ) )  /\  Y  e.  V )
)  ->  ( (
( 1r `  (Scalar `  W ) ) ( +g  `  (Scalar `  W ) ) ( 1r `  (Scalar `  W ) ) ) ( .s `  W
) Y )  =  ( ( ( 1r
`  (Scalar `  W )
) ( .s `  W ) Y ) 
.+  ( ( 1r
`  (Scalar `  W )
) ( .s `  W ) Y ) ) )
281, 6, 6, 11, 27syl13anc 1250 . . . . . . . 8  |-  ( ( W  e.  LMod  /\  X  e.  V  /\  Y  e.  V )  ->  (
( ( 1r `  (Scalar `  W ) ) ( +g  `  (Scalar `  W ) ) ( 1r `  (Scalar `  W ) ) ) ( .s `  W
) Y )  =  ( ( ( 1r
`  (Scalar `  W )
) ( .s `  W ) Y ) 
.+  ( ( 1r
`  (Scalar `  W )
) ( .s `  W ) Y ) ) )
2912, 2, 14, 4lmodvs1 13505 . . . . . . . . . 10  |-  ( ( W  e.  LMod  /\  Y  e.  V )  ->  (
( 1r `  (Scalar `  W ) ) ( .s `  W ) Y )  =  Y )
301, 11, 29syl2anc 411 . . . . . . . . 9  |-  ( ( W  e.  LMod  /\  X  e.  V  /\  Y  e.  V )  ->  (
( 1r `  (Scalar `  W ) ) ( .s `  W ) Y )  =  Y )
3130, 30oveq12d 5906 . . . . . . . 8  |-  ( ( W  e.  LMod  /\  X  e.  V  /\  Y  e.  V )  ->  (
( ( 1r `  (Scalar `  W ) ) ( .s `  W
) Y )  .+  ( ( 1r `  (Scalar `  W ) ) ( .s `  W
) Y ) )  =  ( Y  .+  Y ) )
3228, 31eqtrd 2220 . . . . . . 7  |-  ( ( W  e.  LMod  /\  X  e.  V  /\  Y  e.  V )  ->  (
( ( 1r `  (Scalar `  W ) ) ( +g  `  (Scalar `  W ) ) ( 1r `  (Scalar `  W ) ) ) ( .s `  W
) Y )  =  ( Y  .+  Y
) )
3326, 32oveq12d 5906 . . . . . 6  |-  ( ( W  e.  LMod  /\  X  e.  V  /\  Y  e.  V )  ->  (
( ( ( 1r
`  (Scalar `  W )
) ( +g  `  (Scalar `  W ) ) ( 1r `  (Scalar `  W ) ) ) ( .s `  W
) X )  .+  ( ( ( 1r
`  (Scalar `  W )
) ( +g  `  (Scalar `  W ) ) ( 1r `  (Scalar `  W ) ) ) ( .s `  W
) Y ) )  =  ( ( X 
.+  X )  .+  ( Y  .+  Y ) ) )
3412, 2, 14, 4lmodvs1 13505 . . . . . . . 8  |-  ( ( W  e.  LMod  /\  ( X  .+  Y )  e.  V )  ->  (
( 1r `  (Scalar `  W ) ) ( .s `  W ) ( X  .+  Y
) )  =  ( X  .+  Y ) )
351, 17, 34syl2anc 411 . . . . . . 7  |-  ( ( W  e.  LMod  /\  X  e.  V  /\  Y  e.  V )  ->  (
( 1r `  (Scalar `  W ) ) ( .s `  W ) ( X  .+  Y
) )  =  ( X  .+  Y ) )
3635, 35oveq12d 5906 . . . . . 6  |-  ( ( W  e.  LMod  /\  X  e.  V  /\  Y  e.  V )  ->  (
( ( 1r `  (Scalar `  W ) ) ( .s `  W
) ( X  .+  Y ) )  .+  ( ( 1r `  (Scalar `  W ) ) ( .s `  W
) ( X  .+  Y ) ) )  =  ( ( X 
.+  Y )  .+  ( X  .+  Y ) ) )
3720, 33, 363eqtr3d 2228 . . . . 5  |-  ( ( W  e.  LMod  /\  X  e.  V  /\  Y  e.  V )  ->  (
( X  .+  X
)  .+  ( Y  .+  Y ) )  =  ( ( X  .+  Y )  .+  ( X  .+  Y ) ) )
3812, 13lmodvacl 13491 . . . . . . 7  |-  ( ( W  e.  LMod  /\  X  e.  V  /\  X  e.  V )  ->  ( X  .+  X )  e.  V )
391, 10, 10, 38syl3anc 1248 . . . . . 6  |-  ( ( W  e.  LMod  /\  X  e.  V  /\  Y  e.  V )  ->  ( X  .+  X )  e.  V )
4012, 13lmodass 13492 . . . . . 6  |-  ( ( W  e.  LMod  /\  (
( X  .+  X
)  e.  V  /\  Y  e.  V  /\  Y  e.  V )
)  ->  ( (
( X  .+  X
)  .+  Y )  .+  Y )  =  ( ( X  .+  X
)  .+  ( Y  .+  Y ) ) )
411, 39, 11, 11, 40syl13anc 1250 . . . . 5  |-  ( ( W  e.  LMod  /\  X  e.  V  /\  Y  e.  V )  ->  (
( ( X  .+  X )  .+  Y
)  .+  Y )  =  ( ( X 
.+  X )  .+  ( Y  .+  Y ) ) )
4212, 13lmodass 13492 . . . . . 6  |-  ( ( W  e.  LMod  /\  (
( X  .+  Y
)  e.  V  /\  X  e.  V  /\  Y  e.  V )
)  ->  ( (
( X  .+  Y
)  .+  X )  .+  Y )  =  ( ( X  .+  Y
)  .+  ( X  .+  Y ) ) )
431, 17, 10, 11, 42syl13anc 1250 . . . . 5  |-  ( ( W  e.  LMod  /\  X  e.  V  /\  Y  e.  V )  ->  (
( ( X  .+  Y )  .+  X
)  .+  Y )  =  ( ( X 
.+  Y )  .+  ( X  .+  Y ) ) )
4437, 41, 433eqtr4d 2230 . . . 4  |-  ( ( W  e.  LMod  /\  X  e.  V  /\  Y  e.  V )  ->  (
( ( X  .+  X )  .+  Y
)  .+  Y )  =  ( ( ( X  .+  Y ) 
.+  X )  .+  Y ) )
45 lmodgrp 13483 . . . . . 6  |-  ( W  e.  LMod  ->  W  e. 
Grp )
461, 45syl 14 . . . . 5  |-  ( ( W  e.  LMod  /\  X  e.  V  /\  Y  e.  V )  ->  W  e.  Grp )
4712, 13lmodvacl 13491 . . . . . 6  |-  ( ( W  e.  LMod  /\  ( X  .+  X )  e.  V  /\  Y  e.  V )  ->  (
( X  .+  X
)  .+  Y )  e.  V )
481, 39, 11, 47syl3anc 1248 . . . . 5  |-  ( ( W  e.  LMod  /\  X  e.  V  /\  Y  e.  V )  ->  (
( X  .+  X
)  .+  Y )  e.  V )
4912, 13lmodvacl 13491 . . . . . 6  |-  ( ( W  e.  LMod  /\  ( X  .+  Y )  e.  V  /\  X  e.  V )  ->  (
( X  .+  Y
)  .+  X )  e.  V )
501, 17, 10, 49syl3anc 1248 . . . . 5  |-  ( ( W  e.  LMod  /\  X  e.  V  /\  Y  e.  V )  ->  (
( X  .+  Y
)  .+  X )  e.  V )
5112, 13grprcan 12934 . . . . 5  |-  ( ( W  e.  Grp  /\  ( ( ( X 
.+  X )  .+  Y )  e.  V  /\  ( ( X  .+  Y )  .+  X
)  e.  V  /\  Y  e.  V )
)  ->  ( (
( ( X  .+  X )  .+  Y
)  .+  Y )  =  ( ( ( X  .+  Y ) 
.+  X )  .+  Y )  <->  ( ( X  .+  X )  .+  Y )  =  ( ( X  .+  Y
)  .+  X )
) )
5246, 48, 50, 11, 51syl13anc 1250 . . . 4  |-  ( ( W  e.  LMod  /\  X  e.  V  /\  Y  e.  V )  ->  (
( ( ( X 
.+  X )  .+  Y )  .+  Y
)  =  ( ( ( X  .+  Y
)  .+  X )  .+  Y )  <->  ( ( X  .+  X )  .+  Y )  =  ( ( X  .+  Y
)  .+  X )
) )
5344, 52mpbid 147 . . 3  |-  ( ( W  e.  LMod  /\  X  e.  V  /\  Y  e.  V )  ->  (
( X  .+  X
)  .+  Y )  =  ( ( X 
.+  Y )  .+  X ) )
5412, 13lmodass 13492 . . . 4  |-  ( ( W  e.  LMod  /\  ( X  e.  V  /\  X  e.  V  /\  Y  e.  V )
)  ->  ( ( X  .+  X )  .+  Y )  =  ( X  .+  ( X 
.+  Y ) ) )
551, 10, 10, 11, 54syl13anc 1250 . . 3  |-  ( ( W  e.  LMod  /\  X  e.  V  /\  Y  e.  V )  ->  (
( X  .+  X
)  .+  Y )  =  ( X  .+  ( X  .+  Y ) ) )
5612, 13lmodass 13492 . . . 4  |-  ( ( W  e.  LMod  /\  ( X  e.  V  /\  Y  e.  V  /\  X  e.  V )
)  ->  ( ( X  .+  Y )  .+  X )  =  ( X  .+  ( Y 
.+  X ) ) )
571, 10, 11, 10, 56syl13anc 1250 . . 3  |-  ( ( W  e.  LMod  /\  X  e.  V  /\  Y  e.  V )  ->  (
( X  .+  Y
)  .+  X )  =  ( X  .+  ( Y  .+  X ) ) )
5853, 55, 573eqtr3d 2228 . 2  |-  ( ( W  e.  LMod  /\  X  e.  V  /\  Y  e.  V )  ->  ( X  .+  ( X  .+  Y ) )  =  ( X  .+  ( Y  .+  X ) ) )
5912, 13lmodvacl 13491 . . . 4  |-  ( ( W  e.  LMod  /\  Y  e.  V  /\  X  e.  V )  ->  ( Y  .+  X )  e.  V )
60593com23 1210 . . 3  |-  ( ( W  e.  LMod  /\  X  e.  V  /\  Y  e.  V )  ->  ( Y  .+  X )  e.  V )
6112, 13lmodlcan 13493 . . 3  |-  ( ( W  e.  LMod  /\  (
( X  .+  Y
)  e.  V  /\  ( Y  .+  X )  e.  V  /\  X  e.  V ) )  -> 
( ( X  .+  ( X  .+  Y ) )  =  ( X 
.+  ( Y  .+  X ) )  <->  ( X  .+  Y )  =  ( Y  .+  X ) ) )
621, 17, 60, 10, 61syl13anc 1250 . 2  |-  ( ( W  e.  LMod  /\  X  e.  V  /\  Y  e.  V )  ->  (
( X  .+  ( X  .+  Y ) )  =  ( X  .+  ( Y  .+  X ) )  <->  ( X  .+  Y )  =  ( Y  .+  X ) ) )
6358, 62mpbid 147 1  |-  ( ( W  e.  LMod  /\  X  e.  V  /\  Y  e.  V )  ->  ( X  .+  Y )  =  ( Y  .+  X
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105    /\ w3a 979    = wceq 1363    e. wcel 2158   ` cfv 5228  (class class class)co 5888   Basecbs 12476   +g cplusg 12551  Scalarcsca 12554   .scvsca 12555   Grpcgrp 12899   1rcur 13211   LModclmod 13476
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1457  ax-7 1458  ax-gen 1459  ax-ie1 1503  ax-ie2 1504  ax-8 1514  ax-10 1515  ax-11 1516  ax-i12 1517  ax-bndl 1519  ax-4 1520  ax-17 1536  ax-i9 1540  ax-ial 1544  ax-i5r 1545  ax-13 2160  ax-14 2161  ax-ext 2169  ax-coll 4130  ax-sep 4133  ax-pow 4186  ax-pr 4221  ax-un 4445  ax-setind 4548  ax-cnex 7916  ax-resscn 7917  ax-1cn 7918  ax-1re 7919  ax-icn 7920  ax-addcl 7921  ax-addrcl 7922  ax-mulcl 7923  ax-addcom 7925  ax-addass 7927  ax-i2m1 7930  ax-0lt1 7931  ax-0id 7933  ax-rnegex 7934  ax-pre-ltirr 7937  ax-pre-ltadd 7941
This theorem depends on definitions:  df-bi 117  df-3an 981  df-tru 1366  df-fal 1369  df-nf 1471  df-sb 1773  df-eu 2039  df-mo 2040  df-clab 2174  df-cleq 2180  df-clel 2183  df-nfc 2318  df-ne 2358  df-nel 2453  df-ral 2470  df-rex 2471  df-reu 2472  df-rmo 2473  df-rab 2474  df-v 2751  df-sbc 2975  df-csb 3070  df-dif 3143  df-un 3145  df-in 3147  df-ss 3154  df-nul 3435  df-pw 3589  df-sn 3610  df-pr 3611  df-op 3613  df-uni 3822  df-int 3857  df-iun 3900  df-br 4016  df-opab 4077  df-mpt 4078  df-id 4305  df-xp 4644  df-rel 4645  df-cnv 4646  df-co 4647  df-dm 4648  df-rn 4649  df-res 4650  df-ima 4651  df-iota 5190  df-fun 5230  df-fn 5231  df-f 5232  df-f1 5233  df-fo 5234  df-f1o 5235  df-fv 5236  df-riota 5844  df-ov 5891  df-oprab 5892  df-mpo 5893  df-pnf 8008  df-mnf 8009  df-ltxr 8011  df-inn 8934  df-2 8992  df-3 8993  df-4 8994  df-5 8995  df-6 8996  df-ndx 12479  df-slot 12480  df-base 12482  df-sets 12483  df-plusg 12564  df-mulr 12565  df-sca 12567  df-vsca 12568  df-0g 12725  df-mgm 12794  df-sgrp 12827  df-mnd 12840  df-grp 12902  df-minusg 12903  df-mgp 13173  df-ur 13212  df-ring 13250  df-lmod 13478
This theorem is referenced by:  lmodabl  13523  lssvsubcl  13555  lssvancl2  13557
  Copyright terms: Public domain W3C validator