ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lmodcom Unicode version

Theorem lmodcom 14210
Description: Left module vector sum is commutative. (Contributed by Gérard Lang, 25-Jun-2014.)
Hypotheses
Ref Expression
lmodcom.v  |-  V  =  ( Base `  W
)
lmodcom.a  |-  .+  =  ( +g  `  W )
Assertion
Ref Expression
lmodcom  |-  ( ( W  e.  LMod  /\  X  e.  V  /\  Y  e.  V )  ->  ( X  .+  Y )  =  ( Y  .+  X
) )

Proof of Theorem lmodcom
StepHypRef Expression
1 simp1 1000 . . . . . . . 8  |-  ( ( W  e.  LMod  /\  X  e.  V  /\  Y  e.  V )  ->  W  e.  LMod )
2 eqid 2207 . . . . . . . . . . 11  |-  (Scalar `  W )  =  (Scalar `  W )
3 eqid 2207 . . . . . . . . . . 11  |-  ( Base `  (Scalar `  W )
)  =  ( Base `  (Scalar `  W )
)
4 eqid 2207 . . . . . . . . . . 11  |-  ( 1r
`  (Scalar `  W )
)  =  ( 1r
`  (Scalar `  W )
)
52, 3, 4lmod1cl 14192 . . . . . . . . . 10  |-  ( W  e.  LMod  ->  ( 1r
`  (Scalar `  W )
)  e.  ( Base `  (Scalar `  W )
) )
61, 5syl 14 . . . . . . . . 9  |-  ( ( W  e.  LMod  /\  X  e.  V  /\  Y  e.  V )  ->  ( 1r `  (Scalar `  W
) )  e.  (
Base `  (Scalar `  W
) ) )
7 eqid 2207 . . . . . . . . . 10  |-  ( +g  `  (Scalar `  W )
)  =  ( +g  `  (Scalar `  W )
)
82, 3, 7lmodacl 14176 . . . . . . . . 9  |-  ( ( W  e.  LMod  /\  ( 1r `  (Scalar `  W
) )  e.  (
Base `  (Scalar `  W
) )  /\  ( 1r `  (Scalar `  W
) )  e.  (
Base `  (Scalar `  W
) ) )  -> 
( ( 1r `  (Scalar `  W ) ) ( +g  `  (Scalar `  W ) ) ( 1r `  (Scalar `  W ) ) )  e.  ( Base `  (Scalar `  W ) ) )
91, 6, 6, 8syl3anc 1250 . . . . . . . 8  |-  ( ( W  e.  LMod  /\  X  e.  V  /\  Y  e.  V )  ->  (
( 1r `  (Scalar `  W ) ) ( +g  `  (Scalar `  W ) ) ( 1r `  (Scalar `  W ) ) )  e.  ( Base `  (Scalar `  W ) ) )
10 simp2 1001 . . . . . . . 8  |-  ( ( W  e.  LMod  /\  X  e.  V  /\  Y  e.  V )  ->  X  e.  V )
11 simp3 1002 . . . . . . . 8  |-  ( ( W  e.  LMod  /\  X  e.  V  /\  Y  e.  V )  ->  Y  e.  V )
12 lmodcom.v . . . . . . . . 9  |-  V  =  ( Base `  W
)
13 lmodcom.a . . . . . . . . 9  |-  .+  =  ( +g  `  W )
14 eqid 2207 . . . . . . . . 9  |-  ( .s
`  W )  =  ( .s `  W
)
1512, 13, 2, 14, 3lmodvsdi 14188 . . . . . . . 8  |-  ( ( W  e.  LMod  /\  (
( ( 1r `  (Scalar `  W ) ) ( +g  `  (Scalar `  W ) ) ( 1r `  (Scalar `  W ) ) )  e.  ( Base `  (Scalar `  W ) )  /\  X  e.  V  /\  Y  e.  V )
)  ->  ( (
( 1r `  (Scalar `  W ) ) ( +g  `  (Scalar `  W ) ) ( 1r `  (Scalar `  W ) ) ) ( .s `  W
) ( X  .+  Y ) )  =  ( ( ( ( 1r `  (Scalar `  W ) ) ( +g  `  (Scalar `  W ) ) ( 1r `  (Scalar `  W ) ) ) ( .s `  W
) X )  .+  ( ( ( 1r
`  (Scalar `  W )
) ( +g  `  (Scalar `  W ) ) ( 1r `  (Scalar `  W ) ) ) ( .s `  W
) Y ) ) )
161, 9, 10, 11, 15syl13anc 1252 . . . . . . 7  |-  ( ( W  e.  LMod  /\  X  e.  V  /\  Y  e.  V )  ->  (
( ( 1r `  (Scalar `  W ) ) ( +g  `  (Scalar `  W ) ) ( 1r `  (Scalar `  W ) ) ) ( .s `  W
) ( X  .+  Y ) )  =  ( ( ( ( 1r `  (Scalar `  W ) ) ( +g  `  (Scalar `  W ) ) ( 1r `  (Scalar `  W ) ) ) ( .s `  W
) X )  .+  ( ( ( 1r
`  (Scalar `  W )
) ( +g  `  (Scalar `  W ) ) ( 1r `  (Scalar `  W ) ) ) ( .s `  W
) Y ) ) )
1712, 13lmodvacl 14179 . . . . . . . 8  |-  ( ( W  e.  LMod  /\  X  e.  V  /\  Y  e.  V )  ->  ( X  .+  Y )  e.  V )
1812, 13, 2, 14, 3, 7lmodvsdir 14189 . . . . . . . 8  |-  ( ( W  e.  LMod  /\  (
( 1r `  (Scalar `  W ) )  e.  ( Base `  (Scalar `  W ) )  /\  ( 1r `  (Scalar `  W ) )  e.  ( Base `  (Scalar `  W ) )  /\  ( X  .+  Y )  e.  V ) )  ->  ( ( ( 1r `  (Scalar `  W ) ) ( +g  `  (Scalar `  W ) ) ( 1r `  (Scalar `  W ) ) ) ( .s `  W
) ( X  .+  Y ) )  =  ( ( ( 1r
`  (Scalar `  W )
) ( .s `  W ) ( X 
.+  Y ) ) 
.+  ( ( 1r
`  (Scalar `  W )
) ( .s `  W ) ( X 
.+  Y ) ) ) )
191, 6, 6, 17, 18syl13anc 1252 . . . . . . 7  |-  ( ( W  e.  LMod  /\  X  e.  V  /\  Y  e.  V )  ->  (
( ( 1r `  (Scalar `  W ) ) ( +g  `  (Scalar `  W ) ) ( 1r `  (Scalar `  W ) ) ) ( .s `  W
) ( X  .+  Y ) )  =  ( ( ( 1r
`  (Scalar `  W )
) ( .s `  W ) ( X 
.+  Y ) ) 
.+  ( ( 1r
`  (Scalar `  W )
) ( .s `  W ) ( X 
.+  Y ) ) ) )
2016, 19eqtr3d 2242 . . . . . 6  |-  ( ( W  e.  LMod  /\  X  e.  V  /\  Y  e.  V )  ->  (
( ( ( 1r
`  (Scalar `  W )
) ( +g  `  (Scalar `  W ) ) ( 1r `  (Scalar `  W ) ) ) ( .s `  W
) X )  .+  ( ( ( 1r
`  (Scalar `  W )
) ( +g  `  (Scalar `  W ) ) ( 1r `  (Scalar `  W ) ) ) ( .s `  W
) Y ) )  =  ( ( ( 1r `  (Scalar `  W ) ) ( .s `  W ) ( X  .+  Y
) )  .+  (
( 1r `  (Scalar `  W ) ) ( .s `  W ) ( X  .+  Y
) ) ) )
2112, 13, 2, 14, 3, 7lmodvsdir 14189 . . . . . . . . 9  |-  ( ( W  e.  LMod  /\  (
( 1r `  (Scalar `  W ) )  e.  ( Base `  (Scalar `  W ) )  /\  ( 1r `  (Scalar `  W ) )  e.  ( Base `  (Scalar `  W ) )  /\  X  e.  V )
)  ->  ( (
( 1r `  (Scalar `  W ) ) ( +g  `  (Scalar `  W ) ) ( 1r `  (Scalar `  W ) ) ) ( .s `  W
) X )  =  ( ( ( 1r
`  (Scalar `  W )
) ( .s `  W ) X ) 
.+  ( ( 1r
`  (Scalar `  W )
) ( .s `  W ) X ) ) )
221, 6, 6, 10, 21syl13anc 1252 . . . . . . . 8  |-  ( ( W  e.  LMod  /\  X  e.  V  /\  Y  e.  V )  ->  (
( ( 1r `  (Scalar `  W ) ) ( +g  `  (Scalar `  W ) ) ( 1r `  (Scalar `  W ) ) ) ( .s `  W
) X )  =  ( ( ( 1r
`  (Scalar `  W )
) ( .s `  W ) X ) 
.+  ( ( 1r
`  (Scalar `  W )
) ( .s `  W ) X ) ) )
2312, 2, 14, 4lmodvs1 14193 . . . . . . . . . 10  |-  ( ( W  e.  LMod  /\  X  e.  V )  ->  (
( 1r `  (Scalar `  W ) ) ( .s `  W ) X )  =  X )
241, 10, 23syl2anc 411 . . . . . . . . 9  |-  ( ( W  e.  LMod  /\  X  e.  V  /\  Y  e.  V )  ->  (
( 1r `  (Scalar `  W ) ) ( .s `  W ) X )  =  X )
2524, 24oveq12d 5985 . . . . . . . 8  |-  ( ( W  e.  LMod  /\  X  e.  V  /\  Y  e.  V )  ->  (
( ( 1r `  (Scalar `  W ) ) ( .s `  W
) X )  .+  ( ( 1r `  (Scalar `  W ) ) ( .s `  W
) X ) )  =  ( X  .+  X ) )
2622, 25eqtrd 2240 . . . . . . 7  |-  ( ( W  e.  LMod  /\  X  e.  V  /\  Y  e.  V )  ->  (
( ( 1r `  (Scalar `  W ) ) ( +g  `  (Scalar `  W ) ) ( 1r `  (Scalar `  W ) ) ) ( .s `  W
) X )  =  ( X  .+  X
) )
2712, 13, 2, 14, 3, 7lmodvsdir 14189 . . . . . . . . 9  |-  ( ( W  e.  LMod  /\  (
( 1r `  (Scalar `  W ) )  e.  ( Base `  (Scalar `  W ) )  /\  ( 1r `  (Scalar `  W ) )  e.  ( Base `  (Scalar `  W ) )  /\  Y  e.  V )
)  ->  ( (
( 1r `  (Scalar `  W ) ) ( +g  `  (Scalar `  W ) ) ( 1r `  (Scalar `  W ) ) ) ( .s `  W
) Y )  =  ( ( ( 1r
`  (Scalar `  W )
) ( .s `  W ) Y ) 
.+  ( ( 1r
`  (Scalar `  W )
) ( .s `  W ) Y ) ) )
281, 6, 6, 11, 27syl13anc 1252 . . . . . . . 8  |-  ( ( W  e.  LMod  /\  X  e.  V  /\  Y  e.  V )  ->  (
( ( 1r `  (Scalar `  W ) ) ( +g  `  (Scalar `  W ) ) ( 1r `  (Scalar `  W ) ) ) ( .s `  W
) Y )  =  ( ( ( 1r
`  (Scalar `  W )
) ( .s `  W ) Y ) 
.+  ( ( 1r
`  (Scalar `  W )
) ( .s `  W ) Y ) ) )
2912, 2, 14, 4lmodvs1 14193 . . . . . . . . . 10  |-  ( ( W  e.  LMod  /\  Y  e.  V )  ->  (
( 1r `  (Scalar `  W ) ) ( .s `  W ) Y )  =  Y )
301, 11, 29syl2anc 411 . . . . . . . . 9  |-  ( ( W  e.  LMod  /\  X  e.  V  /\  Y  e.  V )  ->  (
( 1r `  (Scalar `  W ) ) ( .s `  W ) Y )  =  Y )
3130, 30oveq12d 5985 . . . . . . . 8  |-  ( ( W  e.  LMod  /\  X  e.  V  /\  Y  e.  V )  ->  (
( ( 1r `  (Scalar `  W ) ) ( .s `  W
) Y )  .+  ( ( 1r `  (Scalar `  W ) ) ( .s `  W
) Y ) )  =  ( Y  .+  Y ) )
3228, 31eqtrd 2240 . . . . . . 7  |-  ( ( W  e.  LMod  /\  X  e.  V  /\  Y  e.  V )  ->  (
( ( 1r `  (Scalar `  W ) ) ( +g  `  (Scalar `  W ) ) ( 1r `  (Scalar `  W ) ) ) ( .s `  W
) Y )  =  ( Y  .+  Y
) )
3326, 32oveq12d 5985 . . . . . 6  |-  ( ( W  e.  LMod  /\  X  e.  V  /\  Y  e.  V )  ->  (
( ( ( 1r
`  (Scalar `  W )
) ( +g  `  (Scalar `  W ) ) ( 1r `  (Scalar `  W ) ) ) ( .s `  W
) X )  .+  ( ( ( 1r
`  (Scalar `  W )
) ( +g  `  (Scalar `  W ) ) ( 1r `  (Scalar `  W ) ) ) ( .s `  W
) Y ) )  =  ( ( X 
.+  X )  .+  ( Y  .+  Y ) ) )
3412, 2, 14, 4lmodvs1 14193 . . . . . . . 8  |-  ( ( W  e.  LMod  /\  ( X  .+  Y )  e.  V )  ->  (
( 1r `  (Scalar `  W ) ) ( .s `  W ) ( X  .+  Y
) )  =  ( X  .+  Y ) )
351, 17, 34syl2anc 411 . . . . . . 7  |-  ( ( W  e.  LMod  /\  X  e.  V  /\  Y  e.  V )  ->  (
( 1r `  (Scalar `  W ) ) ( .s `  W ) ( X  .+  Y
) )  =  ( X  .+  Y ) )
3635, 35oveq12d 5985 . . . . . 6  |-  ( ( W  e.  LMod  /\  X  e.  V  /\  Y  e.  V )  ->  (
( ( 1r `  (Scalar `  W ) ) ( .s `  W
) ( X  .+  Y ) )  .+  ( ( 1r `  (Scalar `  W ) ) ( .s `  W
) ( X  .+  Y ) ) )  =  ( ( X 
.+  Y )  .+  ( X  .+  Y ) ) )
3720, 33, 363eqtr3d 2248 . . . . 5  |-  ( ( W  e.  LMod  /\  X  e.  V  /\  Y  e.  V )  ->  (
( X  .+  X
)  .+  ( Y  .+  Y ) )  =  ( ( X  .+  Y )  .+  ( X  .+  Y ) ) )
3812, 13lmodvacl 14179 . . . . . . 7  |-  ( ( W  e.  LMod  /\  X  e.  V  /\  X  e.  V )  ->  ( X  .+  X )  e.  V )
391, 10, 10, 38syl3anc 1250 . . . . . 6  |-  ( ( W  e.  LMod  /\  X  e.  V  /\  Y  e.  V )  ->  ( X  .+  X )  e.  V )
4012, 13lmodass 14180 . . . . . 6  |-  ( ( W  e.  LMod  /\  (
( X  .+  X
)  e.  V  /\  Y  e.  V  /\  Y  e.  V )
)  ->  ( (
( X  .+  X
)  .+  Y )  .+  Y )  =  ( ( X  .+  X
)  .+  ( Y  .+  Y ) ) )
411, 39, 11, 11, 40syl13anc 1252 . . . . 5  |-  ( ( W  e.  LMod  /\  X  e.  V  /\  Y  e.  V )  ->  (
( ( X  .+  X )  .+  Y
)  .+  Y )  =  ( ( X 
.+  X )  .+  ( Y  .+  Y ) ) )
4212, 13lmodass 14180 . . . . . 6  |-  ( ( W  e.  LMod  /\  (
( X  .+  Y
)  e.  V  /\  X  e.  V  /\  Y  e.  V )
)  ->  ( (
( X  .+  Y
)  .+  X )  .+  Y )  =  ( ( X  .+  Y
)  .+  ( X  .+  Y ) ) )
431, 17, 10, 11, 42syl13anc 1252 . . . . 5  |-  ( ( W  e.  LMod  /\  X  e.  V  /\  Y  e.  V )  ->  (
( ( X  .+  Y )  .+  X
)  .+  Y )  =  ( ( X 
.+  Y )  .+  ( X  .+  Y ) ) )
4437, 41, 433eqtr4d 2250 . . . 4  |-  ( ( W  e.  LMod  /\  X  e.  V  /\  Y  e.  V )  ->  (
( ( X  .+  X )  .+  Y
)  .+  Y )  =  ( ( ( X  .+  Y ) 
.+  X )  .+  Y ) )
45 lmodgrp 14171 . . . . . 6  |-  ( W  e.  LMod  ->  W  e. 
Grp )
461, 45syl 14 . . . . 5  |-  ( ( W  e.  LMod  /\  X  e.  V  /\  Y  e.  V )  ->  W  e.  Grp )
4712, 13lmodvacl 14179 . . . . . 6  |-  ( ( W  e.  LMod  /\  ( X  .+  X )  e.  V  /\  Y  e.  V )  ->  (
( X  .+  X
)  .+  Y )  e.  V )
481, 39, 11, 47syl3anc 1250 . . . . 5  |-  ( ( W  e.  LMod  /\  X  e.  V  /\  Y  e.  V )  ->  (
( X  .+  X
)  .+  Y )  e.  V )
4912, 13lmodvacl 14179 . . . . . 6  |-  ( ( W  e.  LMod  /\  ( X  .+  Y )  e.  V  /\  X  e.  V )  ->  (
( X  .+  Y
)  .+  X )  e.  V )
501, 17, 10, 49syl3anc 1250 . . . . 5  |-  ( ( W  e.  LMod  /\  X  e.  V  /\  Y  e.  V )  ->  (
( X  .+  Y
)  .+  X )  e.  V )
5112, 13grprcan 13484 . . . . 5  |-  ( ( W  e.  Grp  /\  ( ( ( X 
.+  X )  .+  Y )  e.  V  /\  ( ( X  .+  Y )  .+  X
)  e.  V  /\  Y  e.  V )
)  ->  ( (
( ( X  .+  X )  .+  Y
)  .+  Y )  =  ( ( ( X  .+  Y ) 
.+  X )  .+  Y )  <->  ( ( X  .+  X )  .+  Y )  =  ( ( X  .+  Y
)  .+  X )
) )
5246, 48, 50, 11, 51syl13anc 1252 . . . 4  |-  ( ( W  e.  LMod  /\  X  e.  V  /\  Y  e.  V )  ->  (
( ( ( X 
.+  X )  .+  Y )  .+  Y
)  =  ( ( ( X  .+  Y
)  .+  X )  .+  Y )  <->  ( ( X  .+  X )  .+  Y )  =  ( ( X  .+  Y
)  .+  X )
) )
5344, 52mpbid 147 . . 3  |-  ( ( W  e.  LMod  /\  X  e.  V  /\  Y  e.  V )  ->  (
( X  .+  X
)  .+  Y )  =  ( ( X 
.+  Y )  .+  X ) )
5412, 13lmodass 14180 . . . 4  |-  ( ( W  e.  LMod  /\  ( X  e.  V  /\  X  e.  V  /\  Y  e.  V )
)  ->  ( ( X  .+  X )  .+  Y )  =  ( X  .+  ( X 
.+  Y ) ) )
551, 10, 10, 11, 54syl13anc 1252 . . 3  |-  ( ( W  e.  LMod  /\  X  e.  V  /\  Y  e.  V )  ->  (
( X  .+  X
)  .+  Y )  =  ( X  .+  ( X  .+  Y ) ) )
5612, 13lmodass 14180 . . . 4  |-  ( ( W  e.  LMod  /\  ( X  e.  V  /\  Y  e.  V  /\  X  e.  V )
)  ->  ( ( X  .+  Y )  .+  X )  =  ( X  .+  ( Y 
.+  X ) ) )
571, 10, 11, 10, 56syl13anc 1252 . . 3  |-  ( ( W  e.  LMod  /\  X  e.  V  /\  Y  e.  V )  ->  (
( X  .+  Y
)  .+  X )  =  ( X  .+  ( Y  .+  X ) ) )
5853, 55, 573eqtr3d 2248 . 2  |-  ( ( W  e.  LMod  /\  X  e.  V  /\  Y  e.  V )  ->  ( X  .+  ( X  .+  Y ) )  =  ( X  .+  ( Y  .+  X ) ) )
5912, 13lmodvacl 14179 . . . 4  |-  ( ( W  e.  LMod  /\  Y  e.  V  /\  X  e.  V )  ->  ( Y  .+  X )  e.  V )
60593com23 1212 . . 3  |-  ( ( W  e.  LMod  /\  X  e.  V  /\  Y  e.  V )  ->  ( Y  .+  X )  e.  V )
6112, 13lmodlcan 14181 . . 3  |-  ( ( W  e.  LMod  /\  (
( X  .+  Y
)  e.  V  /\  ( Y  .+  X )  e.  V  /\  X  e.  V ) )  -> 
( ( X  .+  ( X  .+  Y ) )  =  ( X 
.+  ( Y  .+  X ) )  <->  ( X  .+  Y )  =  ( Y  .+  X ) ) )
621, 17, 60, 10, 61syl13anc 1252 . 2  |-  ( ( W  e.  LMod  /\  X  e.  V  /\  Y  e.  V )  ->  (
( X  .+  ( X  .+  Y ) )  =  ( X  .+  ( Y  .+  X ) )  <->  ( X  .+  Y )  =  ( Y  .+  X ) ) )
6358, 62mpbid 147 1  |-  ( ( W  e.  LMod  /\  X  e.  V  /\  Y  e.  V )  ->  ( X  .+  Y )  =  ( Y  .+  X
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105    /\ w3a 981    = wceq 1373    e. wcel 2178   ` cfv 5290  (class class class)co 5967   Basecbs 12947   +g cplusg 13024  Scalarcsca 13027   .scvsca 13028   Grpcgrp 13447   1rcur 13836   LModclmod 14164
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-coll 4175  ax-sep 4178  ax-pow 4234  ax-pr 4269  ax-un 4498  ax-setind 4603  ax-cnex 8051  ax-resscn 8052  ax-1cn 8053  ax-1re 8054  ax-icn 8055  ax-addcl 8056  ax-addrcl 8057  ax-mulcl 8058  ax-addcom 8060  ax-addass 8062  ax-i2m1 8065  ax-0lt1 8066  ax-0id 8068  ax-rnegex 8069  ax-pre-ltirr 8072  ax-pre-ltadd 8076
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-nel 2474  df-ral 2491  df-rex 2492  df-reu 2493  df-rmo 2494  df-rab 2495  df-v 2778  df-sbc 3006  df-csb 3102  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-nul 3469  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-int 3900  df-iun 3943  df-br 4060  df-opab 4122  df-mpt 4123  df-id 4358  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-res 4705  df-ima 4706  df-iota 5251  df-fun 5292  df-fn 5293  df-f 5294  df-f1 5295  df-fo 5296  df-f1o 5297  df-fv 5298  df-riota 5922  df-ov 5970  df-oprab 5971  df-mpo 5972  df-pnf 8144  df-mnf 8145  df-ltxr 8147  df-inn 9072  df-2 9130  df-3 9131  df-4 9132  df-5 9133  df-6 9134  df-ndx 12950  df-slot 12951  df-base 12953  df-sets 12954  df-plusg 13037  df-mulr 13038  df-sca 13040  df-vsca 13041  df-0g 13205  df-mgm 13303  df-sgrp 13349  df-mnd 13364  df-grp 13450  df-minusg 13451  df-mgp 13798  df-ur 13837  df-ring 13875  df-lmod 14166
This theorem is referenced by:  lmodabl  14211  lssvsubcl  14243  lssvancl2  14245
  Copyright terms: Public domain W3C validator