ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lmodvneg1 Unicode version

Theorem lmodvneg1 14092
Description: Minus 1 times a vector is the negative of the vector. Equation 2 of [Kreyszig] p. 51. (Contributed by NM, 18-Apr-2014.) (Revised by Mario Carneiro, 19-Jun-2014.)
Hypotheses
Ref Expression
lmodvneg1.v  |-  V  =  ( Base `  W
)
lmodvneg1.n  |-  N  =  ( invg `  W )
lmodvneg1.f  |-  F  =  (Scalar `  W )
lmodvneg1.s  |-  .x.  =  ( .s `  W )
lmodvneg1.u  |-  .1.  =  ( 1r `  F )
lmodvneg1.m  |-  M  =  ( invg `  F )
Assertion
Ref Expression
lmodvneg1  |-  ( ( W  e.  LMod  /\  X  e.  V )  ->  (
( M `  .1.  )  .x.  X )  =  ( N `  X
) )

Proof of Theorem lmodvneg1
StepHypRef Expression
1 simpl 109 . . . 4  |-  ( ( W  e.  LMod  /\  X  e.  V )  ->  W  e.  LMod )
2 lmodvneg1.f . . . . . 6  |-  F  =  (Scalar `  W )
32lmodfgrp 14058 . . . . 5  |-  ( W  e.  LMod  ->  F  e. 
Grp )
4 eqid 2205 . . . . . . 7  |-  ( Base `  F )  =  (
Base `  F )
5 lmodvneg1.u . . . . . . 7  |-  .1.  =  ( 1r `  F )
62, 4, 5lmod1cl 14077 . . . . . 6  |-  ( W  e.  LMod  ->  .1.  e.  ( Base `  F )
)
76adantr 276 . . . . 5  |-  ( ( W  e.  LMod  /\  X  e.  V )  ->  .1.  e.  ( Base `  F
) )
8 lmodvneg1.m . . . . . 6  |-  M  =  ( invg `  F )
94, 8grpinvcl 13380 . . . . 5  |-  ( ( F  e.  Grp  /\  .1.  e.  ( Base `  F
) )  ->  ( M `  .1.  )  e.  ( Base `  F
) )
103, 7, 9syl2an2r 595 . . . 4  |-  ( ( W  e.  LMod  /\  X  e.  V )  ->  ( M `  .1.  )  e.  ( Base `  F
) )
11 simpr 110 . . . 4  |-  ( ( W  e.  LMod  /\  X  e.  V )  ->  X  e.  V )
12 lmodvneg1.v . . . . 5  |-  V  =  ( Base `  W
)
13 lmodvneg1.s . . . . 5  |-  .x.  =  ( .s `  W )
1412, 2, 13, 4lmodvscl 14067 . . . 4  |-  ( ( W  e.  LMod  /\  ( M `  .1.  )  e.  ( Base `  F
)  /\  X  e.  V )  ->  (
( M `  .1.  )  .x.  X )  e.  V )
151, 10, 11, 14syl3anc 1250 . . 3  |-  ( ( W  e.  LMod  /\  X  e.  V )  ->  (
( M `  .1.  )  .x.  X )  e.  V )
16 eqid 2205 . . . 4  |-  ( +g  `  W )  =  ( +g  `  W )
17 eqid 2205 . . . 4  |-  ( 0g
`  W )  =  ( 0g `  W
)
1812, 16, 17lmod0vrid 14081 . . 3  |-  ( ( W  e.  LMod  /\  (
( M `  .1.  )  .x.  X )  e.  V )  ->  (
( ( M `  .1.  )  .x.  X ) ( +g  `  W
) ( 0g `  W ) )  =  ( ( M `  .1.  )  .x.  X ) )
1915, 18syldan 282 . 2  |-  ( ( W  e.  LMod  /\  X  e.  V )  ->  (
( ( M `  .1.  )  .x.  X ) ( +g  `  W
) ( 0g `  W ) )  =  ( ( M `  .1.  )  .x.  X ) )
20 lmodvneg1.n . . . . . 6  |-  N  =  ( invg `  W )
2112, 20lmodvnegcl 14090 . . . . 5  |-  ( ( W  e.  LMod  /\  X  e.  V )  ->  ( N `  X )  e.  V )
2212, 16lmodass 14065 . . . . 5  |-  ( ( W  e.  LMod  /\  (
( ( M `  .1.  )  .x.  X )  e.  V  /\  X  e.  V  /\  ( N `  X )  e.  V ) )  -> 
( ( ( ( M `  .1.  )  .x.  X ) ( +g  `  W ) X ) ( +g  `  W
) ( N `  X ) )  =  ( ( ( M `
 .1.  )  .x.  X ) ( +g  `  W ) ( X ( +g  `  W
) ( N `  X ) ) ) )
231, 15, 11, 21, 22syl13anc 1252 . . . 4  |-  ( ( W  e.  LMod  /\  X  e.  V )  ->  (
( ( ( M `
 .1.  )  .x.  X ) ( +g  `  W ) X ) ( +g  `  W
) ( N `  X ) )  =  ( ( ( M `
 .1.  )  .x.  X ) ( +g  `  W ) ( X ( +g  `  W
) ( N `  X ) ) ) )
2412, 2, 13, 5lmodvs1 14078 . . . . . . 7  |-  ( ( W  e.  LMod  /\  X  e.  V )  ->  (  .1.  .x.  X )  =  X )
2524oveq2d 5960 . . . . . 6  |-  ( ( W  e.  LMod  /\  X  e.  V )  ->  (
( ( M `  .1.  )  .x.  X ) ( +g  `  W
) (  .1.  .x.  X ) )  =  ( ( ( M `
 .1.  )  .x.  X ) ( +g  `  W ) X ) )
26 eqid 2205 . . . . . . . . . 10  |-  ( +g  `  F )  =  ( +g  `  F )
27 eqid 2205 . . . . . . . . . 10  |-  ( 0g
`  F )  =  ( 0g `  F
)
284, 26, 27, 8grplinv 13382 . . . . . . . . 9  |-  ( ( F  e.  Grp  /\  .1.  e.  ( Base `  F
) )  ->  (
( M `  .1.  ) ( +g  `  F
)  .1.  )  =  ( 0g `  F
) )
293, 7, 28syl2an2r 595 . . . . . . . 8  |-  ( ( W  e.  LMod  /\  X  e.  V )  ->  (
( M `  .1.  ) ( +g  `  F
)  .1.  )  =  ( 0g `  F
) )
3029oveq1d 5959 . . . . . . 7  |-  ( ( W  e.  LMod  /\  X  e.  V )  ->  (
( ( M `  .1.  ) ( +g  `  F
)  .1.  )  .x.  X )  =  ( ( 0g `  F
)  .x.  X )
)
3112, 16, 2, 13, 4, 26lmodvsdir 14074 . . . . . . . 8  |-  ( ( W  e.  LMod  /\  (
( M `  .1.  )  e.  ( Base `  F )  /\  .1.  e.  ( Base `  F
)  /\  X  e.  V ) )  -> 
( ( ( M `
 .1.  ) ( +g  `  F )  .1.  )  .x.  X
)  =  ( ( ( M `  .1.  )  .x.  X ) ( +g  `  W ) (  .1.  .x.  X
) ) )
321, 10, 7, 11, 31syl13anc 1252 . . . . . . 7  |-  ( ( W  e.  LMod  /\  X  e.  V )  ->  (
( ( M `  .1.  ) ( +g  `  F
)  .1.  )  .x.  X )  =  ( ( ( M `  .1.  )  .x.  X ) ( +g  `  W
) (  .1.  .x.  X ) ) )
3312, 2, 13, 27, 17lmod0vs 14083 . . . . . . 7  |-  ( ( W  e.  LMod  /\  X  e.  V )  ->  (
( 0g `  F
)  .x.  X )  =  ( 0g `  W ) )
3430, 32, 333eqtr3d 2246 . . . . . 6  |-  ( ( W  e.  LMod  /\  X  e.  V )  ->  (
( ( M `  .1.  )  .x.  X ) ( +g  `  W
) (  .1.  .x.  X ) )  =  ( 0g `  W
) )
3525, 34eqtr3d 2240 . . . . 5  |-  ( ( W  e.  LMod  /\  X  e.  V )  ->  (
( ( M `  .1.  )  .x.  X ) ( +g  `  W
) X )  =  ( 0g `  W
) )
3635oveq1d 5959 . . . 4  |-  ( ( W  e.  LMod  /\  X  e.  V )  ->  (
( ( ( M `
 .1.  )  .x.  X ) ( +g  `  W ) X ) ( +g  `  W
) ( N `  X ) )  =  ( ( 0g `  W ) ( +g  `  W ) ( N `
 X ) ) )
3723, 36eqtr3d 2240 . . 3  |-  ( ( W  e.  LMod  /\  X  e.  V )  ->  (
( ( M `  .1.  )  .x.  X ) ( +g  `  W
) ( X ( +g  `  W ) ( N `  X
) ) )  =  ( ( 0g `  W ) ( +g  `  W ) ( N `
 X ) ) )
3812, 16, 17, 20lmodvnegid 14091 . . . 4  |-  ( ( W  e.  LMod  /\  X  e.  V )  ->  ( X ( +g  `  W
) ( N `  X ) )  =  ( 0g `  W
) )
3938oveq2d 5960 . . 3  |-  ( ( W  e.  LMod  /\  X  e.  V )  ->  (
( ( M `  .1.  )  .x.  X ) ( +g  `  W
) ( X ( +g  `  W ) ( N `  X
) ) )  =  ( ( ( M `
 .1.  )  .x.  X ) ( +g  `  W ) ( 0g
`  W ) ) )
4012, 16, 17lmod0vlid 14080 . . . 4  |-  ( ( W  e.  LMod  /\  ( N `  X )  e.  V )  ->  (
( 0g `  W
) ( +g  `  W
) ( N `  X ) )  =  ( N `  X
) )
4121, 40syldan 282 . . 3  |-  ( ( W  e.  LMod  /\  X  e.  V )  ->  (
( 0g `  W
) ( +g  `  W
) ( N `  X ) )  =  ( N `  X
) )
4237, 39, 413eqtr3d 2246 . 2  |-  ( ( W  e.  LMod  /\  X  e.  V )  ->  (
( ( M `  .1.  )  .x.  X ) ( +g  `  W
) ( 0g `  W ) )  =  ( N `  X
) )
4319, 42eqtr3d 2240 1  |-  ( ( W  e.  LMod  /\  X  e.  V )  ->  (
( M `  .1.  )  .x.  X )  =  ( N `  X
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1373    e. wcel 2176   ` cfv 5271  (class class class)co 5944   Basecbs 12832   +g cplusg 12909  Scalarcsca 12912   .scvsca 12913   0gc0g 13088   Grpcgrp 13332   invgcminusg 13333   1rcur 13721   LModclmod 14049
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-coll 4159  ax-sep 4162  ax-pow 4218  ax-pr 4253  ax-un 4480  ax-setind 4585  ax-cnex 8016  ax-resscn 8017  ax-1cn 8018  ax-1re 8019  ax-icn 8020  ax-addcl 8021  ax-addrcl 8022  ax-mulcl 8023  ax-addcom 8025  ax-addass 8027  ax-i2m1 8030  ax-0lt1 8031  ax-0id 8033  ax-rnegex 8034  ax-pre-ltirr 8037  ax-pre-ltadd 8041
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-nel 2472  df-ral 2489  df-rex 2490  df-reu 2491  df-rmo 2492  df-rab 2493  df-v 2774  df-sbc 2999  df-csb 3094  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3461  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-int 3886  df-iun 3929  df-br 4045  df-opab 4106  df-mpt 4107  df-id 4340  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-rn 4686  df-res 4687  df-ima 4688  df-iota 5232  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-riota 5899  df-ov 5947  df-oprab 5948  df-mpo 5949  df-pnf 8109  df-mnf 8110  df-ltxr 8112  df-inn 9037  df-2 9095  df-3 9096  df-4 9097  df-5 9098  df-6 9099  df-ndx 12835  df-slot 12836  df-base 12838  df-sets 12839  df-plusg 12922  df-mulr 12923  df-sca 12925  df-vsca 12926  df-0g 13090  df-mgm 13188  df-sgrp 13234  df-mnd 13249  df-grp 13335  df-minusg 13336  df-mgp 13683  df-ur 13722  df-ring 13760  df-lmod 14051
This theorem is referenced by:  lmodvsneg  14093  lmodvsubval2  14104  lssvnegcl  14138  lspsnneg  14182
  Copyright terms: Public domain W3C validator