| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > lmodvneg1 | Unicode version | ||
| Description: Minus 1 times a vector is the negative of the vector. Equation 2 of [Kreyszig] p. 51. (Contributed by NM, 18-Apr-2014.) (Revised by Mario Carneiro, 19-Jun-2014.) |
| Ref | Expression |
|---|---|
| lmodvneg1.v |
|
| lmodvneg1.n |
|
| lmodvneg1.f |
|
| lmodvneg1.s |
|
| lmodvneg1.u |
|
| lmodvneg1.m |
|
| Ref | Expression |
|---|---|
| lmodvneg1 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl 109 |
. . . 4
| |
| 2 | lmodvneg1.f |
. . . . . 6
| |
| 3 | 2 | lmodfgrp 14091 |
. . . . 5
|
| 4 | eqid 2205 |
. . . . . . 7
| |
| 5 | lmodvneg1.u |
. . . . . . 7
| |
| 6 | 2, 4, 5 | lmod1cl 14110 |
. . . . . 6
|
| 7 | 6 | adantr 276 |
. . . . 5
|
| 8 | lmodvneg1.m |
. . . . . 6
| |
| 9 | 4, 8 | grpinvcl 13413 |
. . . . 5
|
| 10 | 3, 7, 9 | syl2an2r 595 |
. . . 4
|
| 11 | simpr 110 |
. . . 4
| |
| 12 | lmodvneg1.v |
. . . . 5
| |
| 13 | lmodvneg1.s |
. . . . 5
| |
| 14 | 12, 2, 13, 4 | lmodvscl 14100 |
. . . 4
|
| 15 | 1, 10, 11, 14 | syl3anc 1250 |
. . 3
|
| 16 | eqid 2205 |
. . . 4
| |
| 17 | eqid 2205 |
. . . 4
| |
| 18 | 12, 16, 17 | lmod0vrid 14114 |
. . 3
|
| 19 | 15, 18 | syldan 282 |
. 2
|
| 20 | lmodvneg1.n |
. . . . . 6
| |
| 21 | 12, 20 | lmodvnegcl 14123 |
. . . . 5
|
| 22 | 12, 16 | lmodass 14098 |
. . . . 5
|
| 23 | 1, 15, 11, 21, 22 | syl13anc 1252 |
. . . 4
|
| 24 | 12, 2, 13, 5 | lmodvs1 14111 |
. . . . . . 7
|
| 25 | 24 | oveq2d 5962 |
. . . . . 6
|
| 26 | eqid 2205 |
. . . . . . . . . 10
| |
| 27 | eqid 2205 |
. . . . . . . . . 10
| |
| 28 | 4, 26, 27, 8 | grplinv 13415 |
. . . . . . . . 9
|
| 29 | 3, 7, 28 | syl2an2r 595 |
. . . . . . . 8
|
| 30 | 29 | oveq1d 5961 |
. . . . . . 7
|
| 31 | 12, 16, 2, 13, 4, 26 | lmodvsdir 14107 |
. . . . . . . 8
|
| 32 | 1, 10, 7, 11, 31 | syl13anc 1252 |
. . . . . . 7
|
| 33 | 12, 2, 13, 27, 17 | lmod0vs 14116 |
. . . . . . 7
|
| 34 | 30, 32, 33 | 3eqtr3d 2246 |
. . . . . 6
|
| 35 | 25, 34 | eqtr3d 2240 |
. . . . 5
|
| 36 | 35 | oveq1d 5961 |
. . . 4
|
| 37 | 23, 36 | eqtr3d 2240 |
. . 3
|
| 38 | 12, 16, 17, 20 | lmodvnegid 14124 |
. . . 4
|
| 39 | 38 | oveq2d 5962 |
. . 3
|
| 40 | 12, 16, 17 | lmod0vlid 14113 |
. . . 4
|
| 41 | 21, 40 | syldan 282 |
. . 3
|
| 42 | 37, 39, 41 | 3eqtr3d 2246 |
. 2
|
| 43 | 19, 42 | eqtr3d 2240 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-coll 4160 ax-sep 4163 ax-pow 4219 ax-pr 4254 ax-un 4481 ax-setind 4586 ax-cnex 8018 ax-resscn 8019 ax-1cn 8020 ax-1re 8021 ax-icn 8022 ax-addcl 8023 ax-addrcl 8024 ax-mulcl 8025 ax-addcom 8027 ax-addass 8029 ax-i2m1 8032 ax-0lt1 8033 ax-0id 8035 ax-rnegex 8036 ax-pre-ltirr 8039 ax-pre-ltadd 8043 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ne 2377 df-nel 2472 df-ral 2489 df-rex 2490 df-reu 2491 df-rmo 2492 df-rab 2493 df-v 2774 df-sbc 2999 df-csb 3094 df-dif 3168 df-un 3170 df-in 3172 df-ss 3179 df-nul 3461 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-int 3886 df-iun 3929 df-br 4046 df-opab 4107 df-mpt 4108 df-id 4341 df-xp 4682 df-rel 4683 df-cnv 4684 df-co 4685 df-dm 4686 df-rn 4687 df-res 4688 df-ima 4689 df-iota 5233 df-fun 5274 df-fn 5275 df-f 5276 df-f1 5277 df-fo 5278 df-f1o 5279 df-fv 5280 df-riota 5901 df-ov 5949 df-oprab 5950 df-mpo 5951 df-pnf 8111 df-mnf 8112 df-ltxr 8114 df-inn 9039 df-2 9097 df-3 9098 df-4 9099 df-5 9100 df-6 9101 df-ndx 12868 df-slot 12869 df-base 12871 df-sets 12872 df-plusg 12955 df-mulr 12956 df-sca 12958 df-vsca 12959 df-0g 13123 df-mgm 13221 df-sgrp 13267 df-mnd 13282 df-grp 13368 df-minusg 13369 df-mgp 13716 df-ur 13755 df-ring 13793 df-lmod 14084 |
| This theorem is referenced by: lmodvsneg 14126 lmodvsubval2 14137 lssvnegcl 14171 lspsnneg 14215 |
| Copyright terms: Public domain | W3C validator |