ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lmodvneg1 Unicode version

Theorem lmodvneg1 13606
Description: Minus 1 times a vector is the negative of the vector. Equation 2 of [Kreyszig] p. 51. (Contributed by NM, 18-Apr-2014.) (Revised by Mario Carneiro, 19-Jun-2014.)
Hypotheses
Ref Expression
lmodvneg1.v  |-  V  =  ( Base `  W
)
lmodvneg1.n  |-  N  =  ( invg `  W )
lmodvneg1.f  |-  F  =  (Scalar `  W )
lmodvneg1.s  |-  .x.  =  ( .s `  W )
lmodvneg1.u  |-  .1.  =  ( 1r `  F )
lmodvneg1.m  |-  M  =  ( invg `  F )
Assertion
Ref Expression
lmodvneg1  |-  ( ( W  e.  LMod  /\  X  e.  V )  ->  (
( M `  .1.  )  .x.  X )  =  ( N `  X
) )

Proof of Theorem lmodvneg1
StepHypRef Expression
1 simpl 109 . . . 4  |-  ( ( W  e.  LMod  /\  X  e.  V )  ->  W  e.  LMod )
2 lmodvneg1.f . . . . . 6  |-  F  =  (Scalar `  W )
32lmodfgrp 13572 . . . . 5  |-  ( W  e.  LMod  ->  F  e. 
Grp )
4 eqid 2188 . . . . . . 7  |-  ( Base `  F )  =  (
Base `  F )
5 lmodvneg1.u . . . . . . 7  |-  .1.  =  ( 1r `  F )
62, 4, 5lmod1cl 13591 . . . . . 6  |-  ( W  e.  LMod  ->  .1.  e.  ( Base `  F )
)
76adantr 276 . . . . 5  |-  ( ( W  e.  LMod  /\  X  e.  V )  ->  .1.  e.  ( Base `  F
) )
8 lmodvneg1.m . . . . . 6  |-  M  =  ( invg `  F )
94, 8grpinvcl 12957 . . . . 5  |-  ( ( F  e.  Grp  /\  .1.  e.  ( Base `  F
) )  ->  ( M `  .1.  )  e.  ( Base `  F
) )
103, 7, 9syl2an2r 595 . . . 4  |-  ( ( W  e.  LMod  /\  X  e.  V )  ->  ( M `  .1.  )  e.  ( Base `  F
) )
11 simpr 110 . . . 4  |-  ( ( W  e.  LMod  /\  X  e.  V )  ->  X  e.  V )
12 lmodvneg1.v . . . . 5  |-  V  =  ( Base `  W
)
13 lmodvneg1.s . . . . 5  |-  .x.  =  ( .s `  W )
1412, 2, 13, 4lmodvscl 13581 . . . 4  |-  ( ( W  e.  LMod  /\  ( M `  .1.  )  e.  ( Base `  F
)  /\  X  e.  V )  ->  (
( M `  .1.  )  .x.  X )  e.  V )
151, 10, 11, 14syl3anc 1248 . . 3  |-  ( ( W  e.  LMod  /\  X  e.  V )  ->  (
( M `  .1.  )  .x.  X )  e.  V )
16 eqid 2188 . . . 4  |-  ( +g  `  W )  =  ( +g  `  W )
17 eqid 2188 . . . 4  |-  ( 0g
`  W )  =  ( 0g `  W
)
1812, 16, 17lmod0vrid 13595 . . 3  |-  ( ( W  e.  LMod  /\  (
( M `  .1.  )  .x.  X )  e.  V )  ->  (
( ( M `  .1.  )  .x.  X ) ( +g  `  W
) ( 0g `  W ) )  =  ( ( M `  .1.  )  .x.  X ) )
1915, 18syldan 282 . 2  |-  ( ( W  e.  LMod  /\  X  e.  V )  ->  (
( ( M `  .1.  )  .x.  X ) ( +g  `  W
) ( 0g `  W ) )  =  ( ( M `  .1.  )  .x.  X ) )
20 lmodvneg1.n . . . . . 6  |-  N  =  ( invg `  W )
2112, 20lmodvnegcl 13604 . . . . 5  |-  ( ( W  e.  LMod  /\  X  e.  V )  ->  ( N `  X )  e.  V )
2212, 16lmodass 13579 . . . . 5  |-  ( ( W  e.  LMod  /\  (
( ( M `  .1.  )  .x.  X )  e.  V  /\  X  e.  V  /\  ( N `  X )  e.  V ) )  -> 
( ( ( ( M `  .1.  )  .x.  X ) ( +g  `  W ) X ) ( +g  `  W
) ( N `  X ) )  =  ( ( ( M `
 .1.  )  .x.  X ) ( +g  `  W ) ( X ( +g  `  W
) ( N `  X ) ) ) )
231, 15, 11, 21, 22syl13anc 1250 . . . 4  |-  ( ( W  e.  LMod  /\  X  e.  V )  ->  (
( ( ( M `
 .1.  )  .x.  X ) ( +g  `  W ) X ) ( +g  `  W
) ( N `  X ) )  =  ( ( ( M `
 .1.  )  .x.  X ) ( +g  `  W ) ( X ( +g  `  W
) ( N `  X ) ) ) )
2412, 2, 13, 5lmodvs1 13592 . . . . . . 7  |-  ( ( W  e.  LMod  /\  X  e.  V )  ->  (  .1.  .x.  X )  =  X )
2524oveq2d 5906 . . . . . 6  |-  ( ( W  e.  LMod  /\  X  e.  V )  ->  (
( ( M `  .1.  )  .x.  X ) ( +g  `  W
) (  .1.  .x.  X ) )  =  ( ( ( M `
 .1.  )  .x.  X ) ( +g  `  W ) X ) )
26 eqid 2188 . . . . . . . . . 10  |-  ( +g  `  F )  =  ( +g  `  F )
27 eqid 2188 . . . . . . . . . 10  |-  ( 0g
`  F )  =  ( 0g `  F
)
284, 26, 27, 8grplinv 12959 . . . . . . . . 9  |-  ( ( F  e.  Grp  /\  .1.  e.  ( Base `  F
) )  ->  (
( M `  .1.  ) ( +g  `  F
)  .1.  )  =  ( 0g `  F
) )
293, 7, 28syl2an2r 595 . . . . . . . 8  |-  ( ( W  e.  LMod  /\  X  e.  V )  ->  (
( M `  .1.  ) ( +g  `  F
)  .1.  )  =  ( 0g `  F
) )
3029oveq1d 5905 . . . . . . 7  |-  ( ( W  e.  LMod  /\  X  e.  V )  ->  (
( ( M `  .1.  ) ( +g  `  F
)  .1.  )  .x.  X )  =  ( ( 0g `  F
)  .x.  X )
)
3112, 16, 2, 13, 4, 26lmodvsdir 13588 . . . . . . . 8  |-  ( ( W  e.  LMod  /\  (
( M `  .1.  )  e.  ( Base `  F )  /\  .1.  e.  ( Base `  F
)  /\  X  e.  V ) )  -> 
( ( ( M `
 .1.  ) ( +g  `  F )  .1.  )  .x.  X
)  =  ( ( ( M `  .1.  )  .x.  X ) ( +g  `  W ) (  .1.  .x.  X
) ) )
321, 10, 7, 11, 31syl13anc 1250 . . . . . . 7  |-  ( ( W  e.  LMod  /\  X  e.  V )  ->  (
( ( M `  .1.  ) ( +g  `  F
)  .1.  )  .x.  X )  =  ( ( ( M `  .1.  )  .x.  X ) ( +g  `  W
) (  .1.  .x.  X ) ) )
3312, 2, 13, 27, 17lmod0vs 13597 . . . . . . 7  |-  ( ( W  e.  LMod  /\  X  e.  V )  ->  (
( 0g `  F
)  .x.  X )  =  ( 0g `  W ) )
3430, 32, 333eqtr3d 2229 . . . . . 6  |-  ( ( W  e.  LMod  /\  X  e.  V )  ->  (
( ( M `  .1.  )  .x.  X ) ( +g  `  W
) (  .1.  .x.  X ) )  =  ( 0g `  W
) )
3525, 34eqtr3d 2223 . . . . 5  |-  ( ( W  e.  LMod  /\  X  e.  V )  ->  (
( ( M `  .1.  )  .x.  X ) ( +g  `  W
) X )  =  ( 0g `  W
) )
3635oveq1d 5905 . . . 4  |-  ( ( W  e.  LMod  /\  X  e.  V )  ->  (
( ( ( M `
 .1.  )  .x.  X ) ( +g  `  W ) X ) ( +g  `  W
) ( N `  X ) )  =  ( ( 0g `  W ) ( +g  `  W ) ( N `
 X ) ) )
3723, 36eqtr3d 2223 . . 3  |-  ( ( W  e.  LMod  /\  X  e.  V )  ->  (
( ( M `  .1.  )  .x.  X ) ( +g  `  W
) ( X ( +g  `  W ) ( N `  X
) ) )  =  ( ( 0g `  W ) ( +g  `  W ) ( N `
 X ) ) )
3812, 16, 17, 20lmodvnegid 13605 . . . 4  |-  ( ( W  e.  LMod  /\  X  e.  V )  ->  ( X ( +g  `  W
) ( N `  X ) )  =  ( 0g `  W
) )
3938oveq2d 5906 . . 3  |-  ( ( W  e.  LMod  /\  X  e.  V )  ->  (
( ( M `  .1.  )  .x.  X ) ( +g  `  W
) ( X ( +g  `  W ) ( N `  X
) ) )  =  ( ( ( M `
 .1.  )  .x.  X ) ( +g  `  W ) ( 0g
`  W ) ) )
4012, 16, 17lmod0vlid 13594 . . . 4  |-  ( ( W  e.  LMod  /\  ( N `  X )  e.  V )  ->  (
( 0g `  W
) ( +g  `  W
) ( N `  X ) )  =  ( N `  X
) )
4121, 40syldan 282 . . 3  |-  ( ( W  e.  LMod  /\  X  e.  V )  ->  (
( 0g `  W
) ( +g  `  W
) ( N `  X ) )  =  ( N `  X
) )
4237, 39, 413eqtr3d 2229 . 2  |-  ( ( W  e.  LMod  /\  X  e.  V )  ->  (
( ( M `  .1.  )  .x.  X ) ( +g  `  W
) ( 0g `  W ) )  =  ( N `  X
) )
4319, 42eqtr3d 2223 1  |-  ( ( W  e.  LMod  /\  X  e.  V )  ->  (
( M `  .1.  )  .x.  X )  =  ( N `  X
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1363    e. wcel 2159   ` cfv 5230  (class class class)co 5890   Basecbs 12479   +g cplusg 12554  Scalarcsca 12557   .scvsca 12558   0gc0g 12726   Grpcgrp 12910   invgcminusg 12911   1rcur 13273   LModclmod 13563
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1457  ax-7 1458  ax-gen 1459  ax-ie1 1503  ax-ie2 1504  ax-8 1514  ax-10 1515  ax-11 1516  ax-i12 1517  ax-bndl 1519  ax-4 1520  ax-17 1536  ax-i9 1540  ax-ial 1544  ax-i5r 1545  ax-13 2161  ax-14 2162  ax-ext 2170  ax-coll 4132  ax-sep 4135  ax-pow 4188  ax-pr 4223  ax-un 4447  ax-setind 4550  ax-cnex 7919  ax-resscn 7920  ax-1cn 7921  ax-1re 7922  ax-icn 7923  ax-addcl 7924  ax-addrcl 7925  ax-mulcl 7926  ax-addcom 7928  ax-addass 7930  ax-i2m1 7933  ax-0lt1 7934  ax-0id 7936  ax-rnegex 7937  ax-pre-ltirr 7940  ax-pre-ltadd 7944
This theorem depends on definitions:  df-bi 117  df-3an 981  df-tru 1366  df-fal 1369  df-nf 1471  df-sb 1773  df-eu 2040  df-mo 2041  df-clab 2175  df-cleq 2181  df-clel 2184  df-nfc 2320  df-ne 2360  df-nel 2455  df-ral 2472  df-rex 2473  df-reu 2474  df-rmo 2475  df-rab 2476  df-v 2753  df-sbc 2977  df-csb 3072  df-dif 3145  df-un 3147  df-in 3149  df-ss 3156  df-nul 3437  df-pw 3591  df-sn 3612  df-pr 3613  df-op 3615  df-uni 3824  df-int 3859  df-iun 3902  df-br 4018  df-opab 4079  df-mpt 4080  df-id 4307  df-xp 4646  df-rel 4647  df-cnv 4648  df-co 4649  df-dm 4650  df-rn 4651  df-res 4652  df-ima 4653  df-iota 5192  df-fun 5232  df-fn 5233  df-f 5234  df-f1 5235  df-fo 5236  df-f1o 5237  df-fv 5238  df-riota 5846  df-ov 5893  df-oprab 5894  df-mpo 5895  df-pnf 8011  df-mnf 8012  df-ltxr 8014  df-inn 8937  df-2 8995  df-3 8996  df-4 8997  df-5 8998  df-6 8999  df-ndx 12482  df-slot 12483  df-base 12485  df-sets 12486  df-plusg 12567  df-mulr 12568  df-sca 12570  df-vsca 12571  df-0g 12728  df-mgm 12797  df-sgrp 12830  df-mnd 12843  df-grp 12913  df-minusg 12914  df-mgp 13235  df-ur 13274  df-ring 13312  df-lmod 13565
This theorem is referenced by:  lmodvsneg  13607  lmodvsubval2  13618  lssvnegcl  13652  lspsnneg  13696
  Copyright terms: Public domain W3C validator