ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lmodsubdir Unicode version

Theorem lmodsubdir 13435
Description: Scalar multiplication distributive law for subtraction. (Contributed by NM, 2-Jul-2014.)
Hypotheses
Ref Expression
lmodsubdir.v  |-  V  =  ( Base `  W
)
lmodsubdir.t  |-  .x.  =  ( .s `  W )
lmodsubdir.f  |-  F  =  (Scalar `  W )
lmodsubdir.k  |-  K  =  ( Base `  F
)
lmodsubdir.m  |-  .-  =  ( -g `  W )
lmodsubdir.s  |-  S  =  ( -g `  F
)
lmodsubdir.w  |-  ( ph  ->  W  e.  LMod )
lmodsubdir.a  |-  ( ph  ->  A  e.  K )
lmodsubdir.b  |-  ( ph  ->  B  e.  K )
lmodsubdir.x  |-  ( ph  ->  X  e.  V )
Assertion
Ref Expression
lmodsubdir  |-  ( ph  ->  ( ( A S B )  .x.  X
)  =  ( ( A  .x.  X ) 
.-  ( B  .x.  X ) ) )

Proof of Theorem lmodsubdir
StepHypRef Expression
1 lmodsubdir.w . . . 4  |-  ( ph  ->  W  e.  LMod )
2 lmodsubdir.a . . . 4  |-  ( ph  ->  A  e.  K )
3 lmodsubdir.f . . . . . . . 8  |-  F  =  (Scalar `  W )
43lmodring 13385 . . . . . . 7  |-  ( W  e.  LMod  ->  F  e. 
Ring )
51, 4syl 14 . . . . . 6  |-  ( ph  ->  F  e.  Ring )
6 ringgrp 13184 . . . . . 6  |-  ( F  e.  Ring  ->  F  e. 
Grp )
75, 6syl 14 . . . . 5  |-  ( ph  ->  F  e.  Grp )
8 lmodsubdir.b . . . . 5  |-  ( ph  ->  B  e.  K )
9 lmodsubdir.k . . . . . 6  |-  K  =  ( Base `  F
)
10 eqid 2177 . . . . . 6  |-  ( invg `  F )  =  ( invg `  F )
119, 10grpinvcl 12921 . . . . 5  |-  ( ( F  e.  Grp  /\  B  e.  K )  ->  ( ( invg `  F ) `  B
)  e.  K )
127, 8, 11syl2anc 411 . . . 4  |-  ( ph  ->  ( ( invg `  F ) `  B
)  e.  K )
13 lmodsubdir.x . . . 4  |-  ( ph  ->  X  e.  V )
14 lmodsubdir.v . . . . 5  |-  V  =  ( Base `  W
)
15 eqid 2177 . . . . 5  |-  ( +g  `  W )  =  ( +g  `  W )
16 lmodsubdir.t . . . . 5  |-  .x.  =  ( .s `  W )
17 eqid 2177 . . . . 5  |-  ( +g  `  F )  =  ( +g  `  F )
1814, 15, 3, 16, 9, 17lmodvsdir 13402 . . . 4  |-  ( ( W  e.  LMod  /\  ( A  e.  K  /\  ( ( invg `  F ) `  B
)  e.  K  /\  X  e.  V )
)  ->  ( ( A ( +g  `  F
) ( ( invg `  F ) `
 B ) ) 
.x.  X )  =  ( ( A  .x.  X ) ( +g  `  W ) ( ( ( invg `  F ) `  B
)  .x.  X )
) )
191, 2, 12, 13, 18syl13anc 1240 . . 3  |-  ( ph  ->  ( ( A ( +g  `  F ) ( ( invg `  F ) `  B
) )  .x.  X
)  =  ( ( A  .x.  X ) ( +g  `  W
) ( ( ( invg `  F
) `  B )  .x.  X ) ) )
20 eqid 2177 . . . . . . 7  |-  ( .r
`  F )  =  ( .r `  F
)
21 eqid 2177 . . . . . . 7  |-  ( 1r
`  F )  =  ( 1r `  F
)
229, 20, 21, 10, 5, 8ringnegl 13228 . . . . . 6  |-  ( ph  ->  ( ( ( invg `  F ) `
 ( 1r `  F ) ) ( .r `  F ) B )  =  ( ( invg `  F ) `  B
) )
2322oveq1d 5890 . . . . 5  |-  ( ph  ->  ( ( ( ( invg `  F
) `  ( 1r `  F ) ) ( .r `  F ) B )  .x.  X
)  =  ( ( ( invg `  F ) `  B
)  .x.  X )
)
249, 21ringidcl 13203 . . . . . . . 8  |-  ( F  e.  Ring  ->  ( 1r
`  F )  e.  K )
255, 24syl 14 . . . . . . 7  |-  ( ph  ->  ( 1r `  F
)  e.  K )
269, 10grpinvcl 12921 . . . . . . 7  |-  ( ( F  e.  Grp  /\  ( 1r `  F )  e.  K )  -> 
( ( invg `  F ) `  ( 1r `  F ) )  e.  K )
277, 25, 26syl2anc 411 . . . . . 6  |-  ( ph  ->  ( ( invg `  F ) `  ( 1r `  F ) )  e.  K )
2814, 3, 16, 9, 20lmodvsass 13403 . . . . . 6  |-  ( ( W  e.  LMod  /\  (
( ( invg `  F ) `  ( 1r `  F ) )  e.  K  /\  B  e.  K  /\  X  e.  V ) )  -> 
( ( ( ( invg `  F
) `  ( 1r `  F ) ) ( .r `  F ) B )  .x.  X
)  =  ( ( ( invg `  F ) `  ( 1r `  F ) ) 
.x.  ( B  .x.  X ) ) )
291, 27, 8, 13, 28syl13anc 1240 . . . . 5  |-  ( ph  ->  ( ( ( ( invg `  F
) `  ( 1r `  F ) ) ( .r `  F ) B )  .x.  X
)  =  ( ( ( invg `  F ) `  ( 1r `  F ) ) 
.x.  ( B  .x.  X ) ) )
3023, 29eqtr3d 2212 . . . 4  |-  ( ph  ->  ( ( ( invg `  F ) `
 B )  .x.  X )  =  ( ( ( invg `  F ) `  ( 1r `  F ) ) 
.x.  ( B  .x.  X ) ) )
3130oveq2d 5891 . . 3  |-  ( ph  ->  ( ( A  .x.  X ) ( +g  `  W ) ( ( ( invg `  F ) `  B
)  .x.  X )
)  =  ( ( A  .x.  X ) ( +g  `  W
) ( ( ( invg `  F
) `  ( 1r `  F ) )  .x.  ( B  .x.  X ) ) ) )
3219, 31eqtrd 2210 . 2  |-  ( ph  ->  ( ( A ( +g  `  F ) ( ( invg `  F ) `  B
) )  .x.  X
)  =  ( ( A  .x.  X ) ( +g  `  W
) ( ( ( invg `  F
) `  ( 1r `  F ) )  .x.  ( B  .x.  X ) ) ) )
33 lmodsubdir.s . . . . 5  |-  S  =  ( -g `  F
)
349, 17, 10, 33grpsubval 12919 . . . 4  |-  ( ( A  e.  K  /\  B  e.  K )  ->  ( A S B )  =  ( A ( +g  `  F
) ( ( invg `  F ) `
 B ) ) )
352, 8, 34syl2anc 411 . . 3  |-  ( ph  ->  ( A S B )  =  ( A ( +g  `  F
) ( ( invg `  F ) `
 B ) ) )
3635oveq1d 5890 . 2  |-  ( ph  ->  ( ( A S B )  .x.  X
)  =  ( ( A ( +g  `  F
) ( ( invg `  F ) `
 B ) ) 
.x.  X ) )
3714, 3, 16, 9lmodvscl 13395 . . . 4  |-  ( ( W  e.  LMod  /\  A  e.  K  /\  X  e.  V )  ->  ( A  .x.  X )  e.  V )
381, 2, 13, 37syl3anc 1238 . . 3  |-  ( ph  ->  ( A  .x.  X
)  e.  V )
3914, 3, 16, 9lmodvscl 13395 . . . 4  |-  ( ( W  e.  LMod  /\  B  e.  K  /\  X  e.  V )  ->  ( B  .x.  X )  e.  V )
401, 8, 13, 39syl3anc 1238 . . 3  |-  ( ph  ->  ( B  .x.  X
)  e.  V )
41 lmodsubdir.m . . . 4  |-  .-  =  ( -g `  W )
4214, 15, 41, 3, 16, 10, 21lmodvsubval2 13432 . . 3  |-  ( ( W  e.  LMod  /\  ( A  .x.  X )  e.  V  /\  ( B 
.x.  X )  e.  V )  ->  (
( A  .x.  X
)  .-  ( B  .x.  X ) )  =  ( ( A  .x.  X ) ( +g  `  W ) ( ( ( invg `  F ) `  ( 1r `  F ) ) 
.x.  ( B  .x.  X ) ) ) )
431, 38, 40, 42syl3anc 1238 . 2  |-  ( ph  ->  ( ( A  .x.  X )  .-  ( B  .x.  X ) )  =  ( ( A 
.x.  X ) ( +g  `  W ) ( ( ( invg `  F ) `
 ( 1r `  F ) )  .x.  ( B  .x.  X ) ) ) )
4432, 36, 433eqtr4d 2220 1  |-  ( ph  ->  ( ( A S B )  .x.  X
)  =  ( ( A  .x.  X ) 
.-  ( B  .x.  X ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1353    e. wcel 2148   ` cfv 5217  (class class class)co 5875   Basecbs 12462   +g cplusg 12536   .rcmulr 12537  Scalarcsca 12539   .scvsca 12540   Grpcgrp 12877   invgcminusg 12878   -gcsg 12879   1rcur 13142   Ringcrg 13179   LModclmod 13377
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4119  ax-sep 4122  ax-pow 4175  ax-pr 4210  ax-un 4434  ax-setind 4537  ax-cnex 7902  ax-resscn 7903  ax-1cn 7904  ax-1re 7905  ax-icn 7906  ax-addcl 7907  ax-addrcl 7908  ax-mulcl 7909  ax-addcom 7911  ax-addass 7913  ax-i2m1 7916  ax-0lt1 7917  ax-0id 7919  ax-rnegex 7920  ax-pre-ltirr 7923  ax-pre-ltadd 7927
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rmo 2463  df-rab 2464  df-v 2740  df-sbc 2964  df-csb 3059  df-dif 3132  df-un 3134  df-in 3136  df-ss 3143  df-nul 3424  df-pw 3578  df-sn 3599  df-pr 3600  df-op 3602  df-uni 3811  df-int 3846  df-iun 3889  df-br 4005  df-opab 4066  df-mpt 4067  df-id 4294  df-xp 4633  df-rel 4634  df-cnv 4635  df-co 4636  df-dm 4637  df-rn 4638  df-res 4639  df-ima 4640  df-iota 5179  df-fun 5219  df-fn 5220  df-f 5221  df-f1 5222  df-fo 5223  df-f1o 5224  df-fv 5225  df-riota 5831  df-ov 5878  df-oprab 5879  df-mpo 5880  df-1st 6141  df-2nd 6142  df-pnf 7994  df-mnf 7995  df-ltxr 7997  df-inn 8920  df-2 8978  df-3 8979  df-4 8980  df-5 8981  df-6 8982  df-ndx 12465  df-slot 12466  df-base 12468  df-sets 12469  df-plusg 12549  df-mulr 12550  df-sca 12552  df-vsca 12553  df-0g 12707  df-mgm 12775  df-sgrp 12808  df-mnd 12818  df-grp 12880  df-minusg 12881  df-sbg 12882  df-mgp 13131  df-ur 13143  df-ring 13181  df-lmod 13379
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator