ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lmodsubdir Unicode version

Theorem lmodsubdir 14049
Description: Scalar multiplication distributive law for subtraction. (Contributed by NM, 2-Jul-2014.)
Hypotheses
Ref Expression
lmodsubdir.v  |-  V  =  ( Base `  W
)
lmodsubdir.t  |-  .x.  =  ( .s `  W )
lmodsubdir.f  |-  F  =  (Scalar `  W )
lmodsubdir.k  |-  K  =  ( Base `  F
)
lmodsubdir.m  |-  .-  =  ( -g `  W )
lmodsubdir.s  |-  S  =  ( -g `  F
)
lmodsubdir.w  |-  ( ph  ->  W  e.  LMod )
lmodsubdir.a  |-  ( ph  ->  A  e.  K )
lmodsubdir.b  |-  ( ph  ->  B  e.  K )
lmodsubdir.x  |-  ( ph  ->  X  e.  V )
Assertion
Ref Expression
lmodsubdir  |-  ( ph  ->  ( ( A S B )  .x.  X
)  =  ( ( A  .x.  X ) 
.-  ( B  .x.  X ) ) )

Proof of Theorem lmodsubdir
StepHypRef Expression
1 lmodsubdir.w . . . 4  |-  ( ph  ->  W  e.  LMod )
2 lmodsubdir.a . . . 4  |-  ( ph  ->  A  e.  K )
3 lmodsubdir.f . . . . . . . 8  |-  F  =  (Scalar `  W )
43lmodring 13999 . . . . . . 7  |-  ( W  e.  LMod  ->  F  e. 
Ring )
51, 4syl 14 . . . . . 6  |-  ( ph  ->  F  e.  Ring )
6 ringgrp 13705 . . . . . 6  |-  ( F  e.  Ring  ->  F  e. 
Grp )
75, 6syl 14 . . . . 5  |-  ( ph  ->  F  e.  Grp )
8 lmodsubdir.b . . . . 5  |-  ( ph  ->  B  e.  K )
9 lmodsubdir.k . . . . . 6  |-  K  =  ( Base `  F
)
10 eqid 2204 . . . . . 6  |-  ( invg `  F )  =  ( invg `  F )
119, 10grpinvcl 13322 . . . . 5  |-  ( ( F  e.  Grp  /\  B  e.  K )  ->  ( ( invg `  F ) `  B
)  e.  K )
127, 8, 11syl2anc 411 . . . 4  |-  ( ph  ->  ( ( invg `  F ) `  B
)  e.  K )
13 lmodsubdir.x . . . 4  |-  ( ph  ->  X  e.  V )
14 lmodsubdir.v . . . . 5  |-  V  =  ( Base `  W
)
15 eqid 2204 . . . . 5  |-  ( +g  `  W )  =  ( +g  `  W )
16 lmodsubdir.t . . . . 5  |-  .x.  =  ( .s `  W )
17 eqid 2204 . . . . 5  |-  ( +g  `  F )  =  ( +g  `  F )
1814, 15, 3, 16, 9, 17lmodvsdir 14016 . . . 4  |-  ( ( W  e.  LMod  /\  ( A  e.  K  /\  ( ( invg `  F ) `  B
)  e.  K  /\  X  e.  V )
)  ->  ( ( A ( +g  `  F
) ( ( invg `  F ) `
 B ) ) 
.x.  X )  =  ( ( A  .x.  X ) ( +g  `  W ) ( ( ( invg `  F ) `  B
)  .x.  X )
) )
191, 2, 12, 13, 18syl13anc 1251 . . 3  |-  ( ph  ->  ( ( A ( +g  `  F ) ( ( invg `  F ) `  B
) )  .x.  X
)  =  ( ( A  .x.  X ) ( +g  `  W
) ( ( ( invg `  F
) `  B )  .x.  X ) ) )
20 eqid 2204 . . . . . . 7  |-  ( .r
`  F )  =  ( .r `  F
)
21 eqid 2204 . . . . . . 7  |-  ( 1r
`  F )  =  ( 1r `  F
)
229, 20, 21, 10, 5, 8ringnegl 13755 . . . . . 6  |-  ( ph  ->  ( ( ( invg `  F ) `
 ( 1r `  F ) ) ( .r `  F ) B )  =  ( ( invg `  F ) `  B
) )
2322oveq1d 5958 . . . . 5  |-  ( ph  ->  ( ( ( ( invg `  F
) `  ( 1r `  F ) ) ( .r `  F ) B )  .x.  X
)  =  ( ( ( invg `  F ) `  B
)  .x.  X )
)
249, 21ringidcl 13724 . . . . . . . 8  |-  ( F  e.  Ring  ->  ( 1r
`  F )  e.  K )
255, 24syl 14 . . . . . . 7  |-  ( ph  ->  ( 1r `  F
)  e.  K )
269, 10grpinvcl 13322 . . . . . . 7  |-  ( ( F  e.  Grp  /\  ( 1r `  F )  e.  K )  -> 
( ( invg `  F ) `  ( 1r `  F ) )  e.  K )
277, 25, 26syl2anc 411 . . . . . 6  |-  ( ph  ->  ( ( invg `  F ) `  ( 1r `  F ) )  e.  K )
2814, 3, 16, 9, 20lmodvsass 14017 . . . . . 6  |-  ( ( W  e.  LMod  /\  (
( ( invg `  F ) `  ( 1r `  F ) )  e.  K  /\  B  e.  K  /\  X  e.  V ) )  -> 
( ( ( ( invg `  F
) `  ( 1r `  F ) ) ( .r `  F ) B )  .x.  X
)  =  ( ( ( invg `  F ) `  ( 1r `  F ) ) 
.x.  ( B  .x.  X ) ) )
291, 27, 8, 13, 28syl13anc 1251 . . . . 5  |-  ( ph  ->  ( ( ( ( invg `  F
) `  ( 1r `  F ) ) ( .r `  F ) B )  .x.  X
)  =  ( ( ( invg `  F ) `  ( 1r `  F ) ) 
.x.  ( B  .x.  X ) ) )
3023, 29eqtr3d 2239 . . . 4  |-  ( ph  ->  ( ( ( invg `  F ) `
 B )  .x.  X )  =  ( ( ( invg `  F ) `  ( 1r `  F ) ) 
.x.  ( B  .x.  X ) ) )
3130oveq2d 5959 . . 3  |-  ( ph  ->  ( ( A  .x.  X ) ( +g  `  W ) ( ( ( invg `  F ) `  B
)  .x.  X )
)  =  ( ( A  .x.  X ) ( +g  `  W
) ( ( ( invg `  F
) `  ( 1r `  F ) )  .x.  ( B  .x.  X ) ) ) )
3219, 31eqtrd 2237 . 2  |-  ( ph  ->  ( ( A ( +g  `  F ) ( ( invg `  F ) `  B
) )  .x.  X
)  =  ( ( A  .x.  X ) ( +g  `  W
) ( ( ( invg `  F
) `  ( 1r `  F ) )  .x.  ( B  .x.  X ) ) ) )
33 lmodsubdir.s . . . . 5  |-  S  =  ( -g `  F
)
349, 17, 10, 33grpsubval 13320 . . . 4  |-  ( ( A  e.  K  /\  B  e.  K )  ->  ( A S B )  =  ( A ( +g  `  F
) ( ( invg `  F ) `
 B ) ) )
352, 8, 34syl2anc 411 . . 3  |-  ( ph  ->  ( A S B )  =  ( A ( +g  `  F
) ( ( invg `  F ) `
 B ) ) )
3635oveq1d 5958 . 2  |-  ( ph  ->  ( ( A S B )  .x.  X
)  =  ( ( A ( +g  `  F
) ( ( invg `  F ) `
 B ) ) 
.x.  X ) )
3714, 3, 16, 9lmodvscl 14009 . . . 4  |-  ( ( W  e.  LMod  /\  A  e.  K  /\  X  e.  V )  ->  ( A  .x.  X )  e.  V )
381, 2, 13, 37syl3anc 1249 . . 3  |-  ( ph  ->  ( A  .x.  X
)  e.  V )
3914, 3, 16, 9lmodvscl 14009 . . . 4  |-  ( ( W  e.  LMod  /\  B  e.  K  /\  X  e.  V )  ->  ( B  .x.  X )  e.  V )
401, 8, 13, 39syl3anc 1249 . . 3  |-  ( ph  ->  ( B  .x.  X
)  e.  V )
41 lmodsubdir.m . . . 4  |-  .-  =  ( -g `  W )
4214, 15, 41, 3, 16, 10, 21lmodvsubval2 14046 . . 3  |-  ( ( W  e.  LMod  /\  ( A  .x.  X )  e.  V  /\  ( B 
.x.  X )  e.  V )  ->  (
( A  .x.  X
)  .-  ( B  .x.  X ) )  =  ( ( A  .x.  X ) ( +g  `  W ) ( ( ( invg `  F ) `  ( 1r `  F ) ) 
.x.  ( B  .x.  X ) ) ) )
431, 38, 40, 42syl3anc 1249 . 2  |-  ( ph  ->  ( ( A  .x.  X )  .-  ( B  .x.  X ) )  =  ( ( A 
.x.  X ) ( +g  `  W ) ( ( ( invg `  F ) `
 ( 1r `  F ) )  .x.  ( B  .x.  X ) ) ) )
4432, 36, 433eqtr4d 2247 1  |-  ( ph  ->  ( ( A S B )  .x.  X
)  =  ( ( A  .x.  X ) 
.-  ( B  .x.  X ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1372    e. wcel 2175   ` cfv 5270  (class class class)co 5943   Basecbs 12774   +g cplusg 12851   .rcmulr 12852  Scalarcsca 12854   .scvsca 12855   Grpcgrp 13274   invgcminusg 13275   -gcsg 13276   1rcur 13663   Ringcrg 13700   LModclmod 13991
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-13 2177  ax-14 2178  ax-ext 2186  ax-coll 4158  ax-sep 4161  ax-pow 4217  ax-pr 4252  ax-un 4479  ax-setind 4584  ax-cnex 8015  ax-resscn 8016  ax-1cn 8017  ax-1re 8018  ax-icn 8019  ax-addcl 8020  ax-addrcl 8021  ax-mulcl 8022  ax-addcom 8024  ax-addass 8026  ax-i2m1 8029  ax-0lt1 8030  ax-0id 8032  ax-rnegex 8033  ax-pre-ltirr 8036  ax-pre-ltadd 8040
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1375  df-fal 1378  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ne 2376  df-nel 2471  df-ral 2488  df-rex 2489  df-reu 2490  df-rmo 2491  df-rab 2492  df-v 2773  df-sbc 2998  df-csb 3093  df-dif 3167  df-un 3169  df-in 3171  df-ss 3178  df-nul 3460  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-int 3885  df-iun 3928  df-br 4044  df-opab 4105  df-mpt 4106  df-id 4339  df-xp 4680  df-rel 4681  df-cnv 4682  df-co 4683  df-dm 4684  df-rn 4685  df-res 4686  df-ima 4687  df-iota 5231  df-fun 5272  df-fn 5273  df-f 5274  df-f1 5275  df-fo 5276  df-f1o 5277  df-fv 5278  df-riota 5898  df-ov 5946  df-oprab 5947  df-mpo 5948  df-1st 6225  df-2nd 6226  df-pnf 8108  df-mnf 8109  df-ltxr 8111  df-inn 9036  df-2 9094  df-3 9095  df-4 9096  df-5 9097  df-6 9098  df-ndx 12777  df-slot 12778  df-base 12780  df-sets 12781  df-plusg 12864  df-mulr 12865  df-sca 12867  df-vsca 12868  df-0g 13032  df-mgm 13130  df-sgrp 13176  df-mnd 13191  df-grp 13277  df-minusg 13278  df-sbg 13279  df-mgp 13625  df-ur 13664  df-ring 13702  df-lmod 13993
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator