ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lmodsubdir Unicode version

Theorem lmodsubdir 13901
Description: Scalar multiplication distributive law for subtraction. (Contributed by NM, 2-Jul-2014.)
Hypotheses
Ref Expression
lmodsubdir.v  |-  V  =  ( Base `  W
)
lmodsubdir.t  |-  .x.  =  ( .s `  W )
lmodsubdir.f  |-  F  =  (Scalar `  W )
lmodsubdir.k  |-  K  =  ( Base `  F
)
lmodsubdir.m  |-  .-  =  ( -g `  W )
lmodsubdir.s  |-  S  =  ( -g `  F
)
lmodsubdir.w  |-  ( ph  ->  W  e.  LMod )
lmodsubdir.a  |-  ( ph  ->  A  e.  K )
lmodsubdir.b  |-  ( ph  ->  B  e.  K )
lmodsubdir.x  |-  ( ph  ->  X  e.  V )
Assertion
Ref Expression
lmodsubdir  |-  ( ph  ->  ( ( A S B )  .x.  X
)  =  ( ( A  .x.  X ) 
.-  ( B  .x.  X ) ) )

Proof of Theorem lmodsubdir
StepHypRef Expression
1 lmodsubdir.w . . . 4  |-  ( ph  ->  W  e.  LMod )
2 lmodsubdir.a . . . 4  |-  ( ph  ->  A  e.  K )
3 lmodsubdir.f . . . . . . . 8  |-  F  =  (Scalar `  W )
43lmodring 13851 . . . . . . 7  |-  ( W  e.  LMod  ->  F  e. 
Ring )
51, 4syl 14 . . . . . 6  |-  ( ph  ->  F  e.  Ring )
6 ringgrp 13557 . . . . . 6  |-  ( F  e.  Ring  ->  F  e. 
Grp )
75, 6syl 14 . . . . 5  |-  ( ph  ->  F  e.  Grp )
8 lmodsubdir.b . . . . 5  |-  ( ph  ->  B  e.  K )
9 lmodsubdir.k . . . . . 6  |-  K  =  ( Base `  F
)
10 eqid 2196 . . . . . 6  |-  ( invg `  F )  =  ( invg `  F )
119, 10grpinvcl 13180 . . . . 5  |-  ( ( F  e.  Grp  /\  B  e.  K )  ->  ( ( invg `  F ) `  B
)  e.  K )
127, 8, 11syl2anc 411 . . . 4  |-  ( ph  ->  ( ( invg `  F ) `  B
)  e.  K )
13 lmodsubdir.x . . . 4  |-  ( ph  ->  X  e.  V )
14 lmodsubdir.v . . . . 5  |-  V  =  ( Base `  W
)
15 eqid 2196 . . . . 5  |-  ( +g  `  W )  =  ( +g  `  W )
16 lmodsubdir.t . . . . 5  |-  .x.  =  ( .s `  W )
17 eqid 2196 . . . . 5  |-  ( +g  `  F )  =  ( +g  `  F )
1814, 15, 3, 16, 9, 17lmodvsdir 13868 . . . 4  |-  ( ( W  e.  LMod  /\  ( A  e.  K  /\  ( ( invg `  F ) `  B
)  e.  K  /\  X  e.  V )
)  ->  ( ( A ( +g  `  F
) ( ( invg `  F ) `
 B ) ) 
.x.  X )  =  ( ( A  .x.  X ) ( +g  `  W ) ( ( ( invg `  F ) `  B
)  .x.  X )
) )
191, 2, 12, 13, 18syl13anc 1251 . . 3  |-  ( ph  ->  ( ( A ( +g  `  F ) ( ( invg `  F ) `  B
) )  .x.  X
)  =  ( ( A  .x.  X ) ( +g  `  W
) ( ( ( invg `  F
) `  B )  .x.  X ) ) )
20 eqid 2196 . . . . . . 7  |-  ( .r
`  F )  =  ( .r `  F
)
21 eqid 2196 . . . . . . 7  |-  ( 1r
`  F )  =  ( 1r `  F
)
229, 20, 21, 10, 5, 8ringnegl 13607 . . . . . 6  |-  ( ph  ->  ( ( ( invg `  F ) `
 ( 1r `  F ) ) ( .r `  F ) B )  =  ( ( invg `  F ) `  B
) )
2322oveq1d 5937 . . . . 5  |-  ( ph  ->  ( ( ( ( invg `  F
) `  ( 1r `  F ) ) ( .r `  F ) B )  .x.  X
)  =  ( ( ( invg `  F ) `  B
)  .x.  X )
)
249, 21ringidcl 13576 . . . . . . . 8  |-  ( F  e.  Ring  ->  ( 1r
`  F )  e.  K )
255, 24syl 14 . . . . . . 7  |-  ( ph  ->  ( 1r `  F
)  e.  K )
269, 10grpinvcl 13180 . . . . . . 7  |-  ( ( F  e.  Grp  /\  ( 1r `  F )  e.  K )  -> 
( ( invg `  F ) `  ( 1r `  F ) )  e.  K )
277, 25, 26syl2anc 411 . . . . . 6  |-  ( ph  ->  ( ( invg `  F ) `  ( 1r `  F ) )  e.  K )
2814, 3, 16, 9, 20lmodvsass 13869 . . . . . 6  |-  ( ( W  e.  LMod  /\  (
( ( invg `  F ) `  ( 1r `  F ) )  e.  K  /\  B  e.  K  /\  X  e.  V ) )  -> 
( ( ( ( invg `  F
) `  ( 1r `  F ) ) ( .r `  F ) B )  .x.  X
)  =  ( ( ( invg `  F ) `  ( 1r `  F ) ) 
.x.  ( B  .x.  X ) ) )
291, 27, 8, 13, 28syl13anc 1251 . . . . 5  |-  ( ph  ->  ( ( ( ( invg `  F
) `  ( 1r `  F ) ) ( .r `  F ) B )  .x.  X
)  =  ( ( ( invg `  F ) `  ( 1r `  F ) ) 
.x.  ( B  .x.  X ) ) )
3023, 29eqtr3d 2231 . . . 4  |-  ( ph  ->  ( ( ( invg `  F ) `
 B )  .x.  X )  =  ( ( ( invg `  F ) `  ( 1r `  F ) ) 
.x.  ( B  .x.  X ) ) )
3130oveq2d 5938 . . 3  |-  ( ph  ->  ( ( A  .x.  X ) ( +g  `  W ) ( ( ( invg `  F ) `  B
)  .x.  X )
)  =  ( ( A  .x.  X ) ( +g  `  W
) ( ( ( invg `  F
) `  ( 1r `  F ) )  .x.  ( B  .x.  X ) ) ) )
3219, 31eqtrd 2229 . 2  |-  ( ph  ->  ( ( A ( +g  `  F ) ( ( invg `  F ) `  B
) )  .x.  X
)  =  ( ( A  .x.  X ) ( +g  `  W
) ( ( ( invg `  F
) `  ( 1r `  F ) )  .x.  ( B  .x.  X ) ) ) )
33 lmodsubdir.s . . . . 5  |-  S  =  ( -g `  F
)
349, 17, 10, 33grpsubval 13178 . . . 4  |-  ( ( A  e.  K  /\  B  e.  K )  ->  ( A S B )  =  ( A ( +g  `  F
) ( ( invg `  F ) `
 B ) ) )
352, 8, 34syl2anc 411 . . 3  |-  ( ph  ->  ( A S B )  =  ( A ( +g  `  F
) ( ( invg `  F ) `
 B ) ) )
3635oveq1d 5937 . 2  |-  ( ph  ->  ( ( A S B )  .x.  X
)  =  ( ( A ( +g  `  F
) ( ( invg `  F ) `
 B ) ) 
.x.  X ) )
3714, 3, 16, 9lmodvscl 13861 . . . 4  |-  ( ( W  e.  LMod  /\  A  e.  K  /\  X  e.  V )  ->  ( A  .x.  X )  e.  V )
381, 2, 13, 37syl3anc 1249 . . 3  |-  ( ph  ->  ( A  .x.  X
)  e.  V )
3914, 3, 16, 9lmodvscl 13861 . . . 4  |-  ( ( W  e.  LMod  /\  B  e.  K  /\  X  e.  V )  ->  ( B  .x.  X )  e.  V )
401, 8, 13, 39syl3anc 1249 . . 3  |-  ( ph  ->  ( B  .x.  X
)  e.  V )
41 lmodsubdir.m . . . 4  |-  .-  =  ( -g `  W )
4214, 15, 41, 3, 16, 10, 21lmodvsubval2 13898 . . 3  |-  ( ( W  e.  LMod  /\  ( A  .x.  X )  e.  V  /\  ( B 
.x.  X )  e.  V )  ->  (
( A  .x.  X
)  .-  ( B  .x.  X ) )  =  ( ( A  .x.  X ) ( +g  `  W ) ( ( ( invg `  F ) `  ( 1r `  F ) ) 
.x.  ( B  .x.  X ) ) ) )
431, 38, 40, 42syl3anc 1249 . 2  |-  ( ph  ->  ( ( A  .x.  X )  .-  ( B  .x.  X ) )  =  ( ( A 
.x.  X ) ( +g  `  W ) ( ( ( invg `  F ) `
 ( 1r `  F ) )  .x.  ( B  .x.  X ) ) ) )
4432, 36, 433eqtr4d 2239 1  |-  ( ph  ->  ( ( A S B )  .x.  X
)  =  ( ( A  .x.  X ) 
.-  ( B  .x.  X ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1364    e. wcel 2167   ` cfv 5258  (class class class)co 5922   Basecbs 12678   +g cplusg 12755   .rcmulr 12756  Scalarcsca 12758   .scvsca 12759   Grpcgrp 13132   invgcminusg 13133   -gcsg 13134   1rcur 13515   Ringcrg 13552   LModclmod 13843
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4148  ax-sep 4151  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-cnex 7970  ax-resscn 7971  ax-1cn 7972  ax-1re 7973  ax-icn 7974  ax-addcl 7975  ax-addrcl 7976  ax-mulcl 7977  ax-addcom 7979  ax-addass 7981  ax-i2m1 7984  ax-0lt1 7985  ax-0id 7987  ax-rnegex 7988  ax-pre-ltirr 7991  ax-pre-ltadd 7995
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-id 4328  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-riota 5877  df-ov 5925  df-oprab 5926  df-mpo 5927  df-1st 6198  df-2nd 6199  df-pnf 8063  df-mnf 8064  df-ltxr 8066  df-inn 8991  df-2 9049  df-3 9050  df-4 9051  df-5 9052  df-6 9053  df-ndx 12681  df-slot 12682  df-base 12684  df-sets 12685  df-plusg 12768  df-mulr 12769  df-sca 12771  df-vsca 12772  df-0g 12929  df-mgm 12999  df-sgrp 13045  df-mnd 13058  df-grp 13135  df-minusg 13136  df-sbg 13137  df-mgp 13477  df-ur 13516  df-ring 13554  df-lmod 13845
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator