ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lmodsubdir Unicode version

Theorem lmodsubdir 13534
Description: Scalar multiplication distributive law for subtraction. (Contributed by NM, 2-Jul-2014.)
Hypotheses
Ref Expression
lmodsubdir.v  |-  V  =  ( Base `  W
)
lmodsubdir.t  |-  .x.  =  ( .s `  W )
lmodsubdir.f  |-  F  =  (Scalar `  W )
lmodsubdir.k  |-  K  =  ( Base `  F
)
lmodsubdir.m  |-  .-  =  ( -g `  W )
lmodsubdir.s  |-  S  =  ( -g `  F
)
lmodsubdir.w  |-  ( ph  ->  W  e.  LMod )
lmodsubdir.a  |-  ( ph  ->  A  e.  K )
lmodsubdir.b  |-  ( ph  ->  B  e.  K )
lmodsubdir.x  |-  ( ph  ->  X  e.  V )
Assertion
Ref Expression
lmodsubdir  |-  ( ph  ->  ( ( A S B )  .x.  X
)  =  ( ( A  .x.  X ) 
.-  ( B  .x.  X ) ) )

Proof of Theorem lmodsubdir
StepHypRef Expression
1 lmodsubdir.w . . . 4  |-  ( ph  ->  W  e.  LMod )
2 lmodsubdir.a . . . 4  |-  ( ph  ->  A  e.  K )
3 lmodsubdir.f . . . . . . . 8  |-  F  =  (Scalar `  W )
43lmodring 13484 . . . . . . 7  |-  ( W  e.  LMod  ->  F  e. 
Ring )
51, 4syl 14 . . . . . 6  |-  ( ph  ->  F  e.  Ring )
6 ringgrp 13253 . . . . . 6  |-  ( F  e.  Ring  ->  F  e. 
Grp )
75, 6syl 14 . . . . 5  |-  ( ph  ->  F  e.  Grp )
8 lmodsubdir.b . . . . 5  |-  ( ph  ->  B  e.  K )
9 lmodsubdir.k . . . . . 6  |-  K  =  ( Base `  F
)
10 eqid 2187 . . . . . 6  |-  ( invg `  F )  =  ( invg `  F )
119, 10grpinvcl 12945 . . . . 5  |-  ( ( F  e.  Grp  /\  B  e.  K )  ->  ( ( invg `  F ) `  B
)  e.  K )
127, 8, 11syl2anc 411 . . . 4  |-  ( ph  ->  ( ( invg `  F ) `  B
)  e.  K )
13 lmodsubdir.x . . . 4  |-  ( ph  ->  X  e.  V )
14 lmodsubdir.v . . . . 5  |-  V  =  ( Base `  W
)
15 eqid 2187 . . . . 5  |-  ( +g  `  W )  =  ( +g  `  W )
16 lmodsubdir.t . . . . 5  |-  .x.  =  ( .s `  W )
17 eqid 2187 . . . . 5  |-  ( +g  `  F )  =  ( +g  `  F )
1814, 15, 3, 16, 9, 17lmodvsdir 13501 . . . 4  |-  ( ( W  e.  LMod  /\  ( A  e.  K  /\  ( ( invg `  F ) `  B
)  e.  K  /\  X  e.  V )
)  ->  ( ( A ( +g  `  F
) ( ( invg `  F ) `
 B ) ) 
.x.  X )  =  ( ( A  .x.  X ) ( +g  `  W ) ( ( ( invg `  F ) `  B
)  .x.  X )
) )
191, 2, 12, 13, 18syl13anc 1250 . . 3  |-  ( ph  ->  ( ( A ( +g  `  F ) ( ( invg `  F ) `  B
) )  .x.  X
)  =  ( ( A  .x.  X ) ( +g  `  W
) ( ( ( invg `  F
) `  B )  .x.  X ) ) )
20 eqid 2187 . . . . . . 7  |-  ( .r
`  F )  =  ( .r `  F
)
21 eqid 2187 . . . . . . 7  |-  ( 1r
`  F )  =  ( 1r `  F
)
229, 20, 21, 10, 5, 8ringnegl 13301 . . . . . 6  |-  ( ph  ->  ( ( ( invg `  F ) `
 ( 1r `  F ) ) ( .r `  F ) B )  =  ( ( invg `  F ) `  B
) )
2322oveq1d 5903 . . . . 5  |-  ( ph  ->  ( ( ( ( invg `  F
) `  ( 1r `  F ) ) ( .r `  F ) B )  .x.  X
)  =  ( ( ( invg `  F ) `  B
)  .x.  X )
)
249, 21ringidcl 13272 . . . . . . . 8  |-  ( F  e.  Ring  ->  ( 1r
`  F )  e.  K )
255, 24syl 14 . . . . . . 7  |-  ( ph  ->  ( 1r `  F
)  e.  K )
269, 10grpinvcl 12945 . . . . . . 7  |-  ( ( F  e.  Grp  /\  ( 1r `  F )  e.  K )  -> 
( ( invg `  F ) `  ( 1r `  F ) )  e.  K )
277, 25, 26syl2anc 411 . . . . . 6  |-  ( ph  ->  ( ( invg `  F ) `  ( 1r `  F ) )  e.  K )
2814, 3, 16, 9, 20lmodvsass 13502 . . . . . 6  |-  ( ( W  e.  LMod  /\  (
( ( invg `  F ) `  ( 1r `  F ) )  e.  K  /\  B  e.  K  /\  X  e.  V ) )  -> 
( ( ( ( invg `  F
) `  ( 1r `  F ) ) ( .r `  F ) B )  .x.  X
)  =  ( ( ( invg `  F ) `  ( 1r `  F ) ) 
.x.  ( B  .x.  X ) ) )
291, 27, 8, 13, 28syl13anc 1250 . . . . 5  |-  ( ph  ->  ( ( ( ( invg `  F
) `  ( 1r `  F ) ) ( .r `  F ) B )  .x.  X
)  =  ( ( ( invg `  F ) `  ( 1r `  F ) ) 
.x.  ( B  .x.  X ) ) )
3023, 29eqtr3d 2222 . . . 4  |-  ( ph  ->  ( ( ( invg `  F ) `
 B )  .x.  X )  =  ( ( ( invg `  F ) `  ( 1r `  F ) ) 
.x.  ( B  .x.  X ) ) )
3130oveq2d 5904 . . 3  |-  ( ph  ->  ( ( A  .x.  X ) ( +g  `  W ) ( ( ( invg `  F ) `  B
)  .x.  X )
)  =  ( ( A  .x.  X ) ( +g  `  W
) ( ( ( invg `  F
) `  ( 1r `  F ) )  .x.  ( B  .x.  X ) ) ) )
3219, 31eqtrd 2220 . 2  |-  ( ph  ->  ( ( A ( +g  `  F ) ( ( invg `  F ) `  B
) )  .x.  X
)  =  ( ( A  .x.  X ) ( +g  `  W
) ( ( ( invg `  F
) `  ( 1r `  F ) )  .x.  ( B  .x.  X ) ) ) )
33 lmodsubdir.s . . . . 5  |-  S  =  ( -g `  F
)
349, 17, 10, 33grpsubval 12943 . . . 4  |-  ( ( A  e.  K  /\  B  e.  K )  ->  ( A S B )  =  ( A ( +g  `  F
) ( ( invg `  F ) `
 B ) ) )
352, 8, 34syl2anc 411 . . 3  |-  ( ph  ->  ( A S B )  =  ( A ( +g  `  F
) ( ( invg `  F ) `
 B ) ) )
3635oveq1d 5903 . 2  |-  ( ph  ->  ( ( A S B )  .x.  X
)  =  ( ( A ( +g  `  F
) ( ( invg `  F ) `
 B ) ) 
.x.  X ) )
3714, 3, 16, 9lmodvscl 13494 . . . 4  |-  ( ( W  e.  LMod  /\  A  e.  K  /\  X  e.  V )  ->  ( A  .x.  X )  e.  V )
381, 2, 13, 37syl3anc 1248 . . 3  |-  ( ph  ->  ( A  .x.  X
)  e.  V )
3914, 3, 16, 9lmodvscl 13494 . . . 4  |-  ( ( W  e.  LMod  /\  B  e.  K  /\  X  e.  V )  ->  ( B  .x.  X )  e.  V )
401, 8, 13, 39syl3anc 1248 . . 3  |-  ( ph  ->  ( B  .x.  X
)  e.  V )
41 lmodsubdir.m . . . 4  |-  .-  =  ( -g `  W )
4214, 15, 41, 3, 16, 10, 21lmodvsubval2 13531 . . 3  |-  ( ( W  e.  LMod  /\  ( A  .x.  X )  e.  V  /\  ( B 
.x.  X )  e.  V )  ->  (
( A  .x.  X
)  .-  ( B  .x.  X ) )  =  ( ( A  .x.  X ) ( +g  `  W ) ( ( ( invg `  F ) `  ( 1r `  F ) ) 
.x.  ( B  .x.  X ) ) ) )
431, 38, 40, 42syl3anc 1248 . 2  |-  ( ph  ->  ( ( A  .x.  X )  .-  ( B  .x.  X ) )  =  ( ( A 
.x.  X ) ( +g  `  W ) ( ( ( invg `  F ) `
 ( 1r `  F ) )  .x.  ( B  .x.  X ) ) ) )
4432, 36, 433eqtr4d 2230 1  |-  ( ph  ->  ( ( A S B )  .x.  X
)  =  ( ( A  .x.  X ) 
.-  ( B  .x.  X ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1363    e. wcel 2158   ` cfv 5228  (class class class)co 5888   Basecbs 12476   +g cplusg 12551   .rcmulr 12552  Scalarcsca 12554   .scvsca 12555   Grpcgrp 12899   invgcminusg 12900   -gcsg 12901   1rcur 13211   Ringcrg 13248   LModclmod 13476
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1457  ax-7 1458  ax-gen 1459  ax-ie1 1503  ax-ie2 1504  ax-8 1514  ax-10 1515  ax-11 1516  ax-i12 1517  ax-bndl 1519  ax-4 1520  ax-17 1536  ax-i9 1540  ax-ial 1544  ax-i5r 1545  ax-13 2160  ax-14 2161  ax-ext 2169  ax-coll 4130  ax-sep 4133  ax-pow 4186  ax-pr 4221  ax-un 4445  ax-setind 4548  ax-cnex 7916  ax-resscn 7917  ax-1cn 7918  ax-1re 7919  ax-icn 7920  ax-addcl 7921  ax-addrcl 7922  ax-mulcl 7923  ax-addcom 7925  ax-addass 7927  ax-i2m1 7930  ax-0lt1 7931  ax-0id 7933  ax-rnegex 7934  ax-pre-ltirr 7937  ax-pre-ltadd 7941
This theorem depends on definitions:  df-bi 117  df-3an 981  df-tru 1366  df-fal 1369  df-nf 1471  df-sb 1773  df-eu 2039  df-mo 2040  df-clab 2174  df-cleq 2180  df-clel 2183  df-nfc 2318  df-ne 2358  df-nel 2453  df-ral 2470  df-rex 2471  df-reu 2472  df-rmo 2473  df-rab 2474  df-v 2751  df-sbc 2975  df-csb 3070  df-dif 3143  df-un 3145  df-in 3147  df-ss 3154  df-nul 3435  df-pw 3589  df-sn 3610  df-pr 3611  df-op 3613  df-uni 3822  df-int 3857  df-iun 3900  df-br 4016  df-opab 4077  df-mpt 4078  df-id 4305  df-xp 4644  df-rel 4645  df-cnv 4646  df-co 4647  df-dm 4648  df-rn 4649  df-res 4650  df-ima 4651  df-iota 5190  df-fun 5230  df-fn 5231  df-f 5232  df-f1 5233  df-fo 5234  df-f1o 5235  df-fv 5236  df-riota 5844  df-ov 5891  df-oprab 5892  df-mpo 5893  df-1st 6155  df-2nd 6156  df-pnf 8008  df-mnf 8009  df-ltxr 8011  df-inn 8934  df-2 8992  df-3 8993  df-4 8994  df-5 8995  df-6 8996  df-ndx 12479  df-slot 12480  df-base 12482  df-sets 12483  df-plusg 12564  df-mulr 12565  df-sca 12567  df-vsca 12568  df-0g 12725  df-mgm 12794  df-sgrp 12827  df-mnd 12840  df-grp 12902  df-minusg 12903  df-sbg 12904  df-mgp 13173  df-ur 13212  df-ring 13250  df-lmod 13478
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator