| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > lssats2 | Unicode version | ||
| Description: A way to express atomisticity (a subspace is the union of its atoms). (Contributed by NM, 3-Feb-2015.) |
| Ref | Expression |
|---|---|
| lssats2.s |
|
| lssats2.n |
|
| lssats2.w |
|
| lssats2.u |
|
| Ref | Expression |
|---|---|
| lssats2 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpr 110 |
. . . . . 6
| |
| 2 | lssats2.w |
. . . . . . . 8
| |
| 3 | 2 | adantr 276 |
. . . . . . 7
|
| 4 | lssats2.u |
. . . . . . . . 9
| |
| 5 | 4 | adantr 276 |
. . . . . . . 8
|
| 6 | eqid 2205 |
. . . . . . . . 9
| |
| 7 | lssats2.s |
. . . . . . . . 9
| |
| 8 | 6, 7 | lsselg 14156 |
. . . . . . . 8
|
| 9 | 3, 5, 1, 8 | syl3anc 1250 |
. . . . . . 7
|
| 10 | lssats2.n |
. . . . . . . 8
| |
| 11 | 6, 10 | lspsnid 14202 |
. . . . . . 7
|
| 12 | 3, 9, 11 | syl2anc 411 |
. . . . . 6
|
| 13 | sneq 3644 |
. . . . . . . . 9
| |
| 14 | 13 | fveq2d 5582 |
. . . . . . . 8
|
| 15 | 14 | eleq2d 2275 |
. . . . . . 7
|
| 16 | 15 | rspcev 2877 |
. . . . . 6
|
| 17 | 1, 12, 16 | syl2anc 411 |
. . . . 5
|
| 18 | 17 | ex 115 |
. . . 4
|
| 19 | 2 | adantr 276 |
. . . . . . 7
|
| 20 | 4 | adantr 276 |
. . . . . . 7
|
| 21 | simpr 110 |
. . . . . . 7
| |
| 22 | 7, 10, 19, 20, 21 | lspsnel5a 14205 |
. . . . . 6
|
| 23 | 22 | sseld 3192 |
. . . . 5
|
| 24 | 23 | rexlimdva 2623 |
. . . 4
|
| 25 | 18, 24 | impbid 129 |
. . 3
|
| 26 | eliun 3931 |
. . 3
| |
| 27 | 25, 26 | bitr4di 198 |
. 2
|
| 28 | 27 | eqrdv 2203 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-coll 4160 ax-sep 4163 ax-pow 4219 ax-pr 4254 ax-un 4481 ax-cnex 8018 ax-resscn 8019 ax-1re 8021 ax-addrcl 8024 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ral 2489 df-rex 2490 df-reu 2491 df-rmo 2492 df-rab 2493 df-v 2774 df-sbc 2999 df-csb 3094 df-un 3170 df-in 3172 df-ss 3179 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-int 3886 df-iun 3929 df-br 4046 df-opab 4107 df-mpt 4108 df-id 4341 df-xp 4682 df-rel 4683 df-cnv 4684 df-co 4685 df-dm 4686 df-rn 4687 df-res 4688 df-ima 4689 df-iota 5233 df-fun 5274 df-fn 5275 df-f 5276 df-f1 5277 df-fo 5278 df-f1o 5279 df-fv 5280 df-riota 5901 df-ov 5949 df-inn 9039 df-2 9097 df-3 9098 df-4 9099 df-5 9100 df-6 9101 df-ndx 12868 df-slot 12869 df-base 12871 df-plusg 12955 df-mulr 12956 df-sca 12958 df-vsca 12959 df-0g 13123 df-mgm 13221 df-sgrp 13267 df-mnd 13282 df-grp 13368 df-lmod 14084 df-lssm 14148 df-lsp 14182 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |