Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > mpoexxg | GIF version |
Description: Existence of an operation class abstraction (version for dependent domains). (Contributed by Mario Carneiro, 30-Dec-2016.) |
Ref | Expression |
---|---|
mpoexg.1 | ⊢ 𝐹 = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) |
Ref | Expression |
---|---|
mpoexxg | ⊢ ((𝐴 ∈ 𝑅 ∧ ∀𝑥 ∈ 𝐴 𝐵 ∈ 𝑆) → 𝐹 ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mpoexg.1 | . . 3 ⊢ 𝐹 = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) | |
2 | 1 | mpofun 5944 | . 2 ⊢ Fun 𝐹 |
3 | 1 | dmmpossx 6167 | . . 3 ⊢ dom 𝐹 ⊆ ∪ 𝑥 ∈ 𝐴 ({𝑥} × 𝐵) |
4 | vex 2729 | . . . . . . 7 ⊢ 𝑥 ∈ V | |
5 | snexg 4163 | . . . . . . 7 ⊢ (𝑥 ∈ V → {𝑥} ∈ V) | |
6 | 4, 5 | ax-mp 5 | . . . . . 6 ⊢ {𝑥} ∈ V |
7 | xpexg 4718 | . . . . . 6 ⊢ (({𝑥} ∈ V ∧ 𝐵 ∈ 𝑆) → ({𝑥} × 𝐵) ∈ V) | |
8 | 6, 7 | mpan 421 | . . . . 5 ⊢ (𝐵 ∈ 𝑆 → ({𝑥} × 𝐵) ∈ V) |
9 | 8 | ralimi 2529 | . . . 4 ⊢ (∀𝑥 ∈ 𝐴 𝐵 ∈ 𝑆 → ∀𝑥 ∈ 𝐴 ({𝑥} × 𝐵) ∈ V) |
10 | iunexg 6087 | . . . 4 ⊢ ((𝐴 ∈ 𝑅 ∧ ∀𝑥 ∈ 𝐴 ({𝑥} × 𝐵) ∈ V) → ∪ 𝑥 ∈ 𝐴 ({𝑥} × 𝐵) ∈ V) | |
11 | 9, 10 | sylan2 284 | . . 3 ⊢ ((𝐴 ∈ 𝑅 ∧ ∀𝑥 ∈ 𝐴 𝐵 ∈ 𝑆) → ∪ 𝑥 ∈ 𝐴 ({𝑥} × 𝐵) ∈ V) |
12 | ssexg 4121 | . . 3 ⊢ ((dom 𝐹 ⊆ ∪ 𝑥 ∈ 𝐴 ({𝑥} × 𝐵) ∧ ∪ 𝑥 ∈ 𝐴 ({𝑥} × 𝐵) ∈ V) → dom 𝐹 ∈ V) | |
13 | 3, 11, 12 | sylancr 411 | . 2 ⊢ ((𝐴 ∈ 𝑅 ∧ ∀𝑥 ∈ 𝐴 𝐵 ∈ 𝑆) → dom 𝐹 ∈ V) |
14 | funex 5708 | . 2 ⊢ ((Fun 𝐹 ∧ dom 𝐹 ∈ V) → 𝐹 ∈ V) | |
15 | 2, 13, 14 | sylancr 411 | 1 ⊢ ((𝐴 ∈ 𝑅 ∧ ∀𝑥 ∈ 𝐴 𝐵 ∈ 𝑆) → 𝐹 ∈ V) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 = wceq 1343 ∈ wcel 2136 ∀wral 2444 Vcvv 2726 ⊆ wss 3116 {csn 3576 ∪ ciun 3866 × cxp 4602 dom cdm 4604 Fun wfun 5182 ∈ cmpo 5844 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-coll 4097 ax-sep 4100 ax-pow 4153 ax-pr 4187 ax-un 4411 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-reu 2451 df-rab 2453 df-v 2728 df-sbc 2952 df-csb 3046 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-iun 3868 df-br 3983 df-opab 4044 df-mpt 4045 df-id 4271 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-res 4616 df-ima 4617 df-iota 5153 df-fun 5190 df-fn 5191 df-f 5192 df-f1 5193 df-fo 5194 df-f1o 5195 df-fv 5196 df-oprab 5846 df-mpo 5847 df-1st 6108 df-2nd 6109 |
This theorem is referenced by: mpoexg 6179 mpoex 6182 |
Copyright terms: Public domain | W3C validator |