Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > mpoexxg | GIF version |
Description: Existence of an operation class abstraction (version for dependent domains). (Contributed by Mario Carneiro, 30-Dec-2016.) |
Ref | Expression |
---|---|
mpoexg.1 | ⊢ 𝐹 = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) |
Ref | Expression |
---|---|
mpoexxg | ⊢ ((𝐴 ∈ 𝑅 ∧ ∀𝑥 ∈ 𝐴 𝐵 ∈ 𝑆) → 𝐹 ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mpoexg.1 | . . 3 ⊢ 𝐹 = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) | |
2 | 1 | mpofun 5955 | . 2 ⊢ Fun 𝐹 |
3 | 1 | dmmpossx 6178 | . . 3 ⊢ dom 𝐹 ⊆ ∪ 𝑥 ∈ 𝐴 ({𝑥} × 𝐵) |
4 | vex 2733 | . . . . . . 7 ⊢ 𝑥 ∈ V | |
5 | snexg 4170 | . . . . . . 7 ⊢ (𝑥 ∈ V → {𝑥} ∈ V) | |
6 | 4, 5 | ax-mp 5 | . . . . . 6 ⊢ {𝑥} ∈ V |
7 | xpexg 4725 | . . . . . 6 ⊢ (({𝑥} ∈ V ∧ 𝐵 ∈ 𝑆) → ({𝑥} × 𝐵) ∈ V) | |
8 | 6, 7 | mpan 422 | . . . . 5 ⊢ (𝐵 ∈ 𝑆 → ({𝑥} × 𝐵) ∈ V) |
9 | 8 | ralimi 2533 | . . . 4 ⊢ (∀𝑥 ∈ 𝐴 𝐵 ∈ 𝑆 → ∀𝑥 ∈ 𝐴 ({𝑥} × 𝐵) ∈ V) |
10 | iunexg 6098 | . . . 4 ⊢ ((𝐴 ∈ 𝑅 ∧ ∀𝑥 ∈ 𝐴 ({𝑥} × 𝐵) ∈ V) → ∪ 𝑥 ∈ 𝐴 ({𝑥} × 𝐵) ∈ V) | |
11 | 9, 10 | sylan2 284 | . . 3 ⊢ ((𝐴 ∈ 𝑅 ∧ ∀𝑥 ∈ 𝐴 𝐵 ∈ 𝑆) → ∪ 𝑥 ∈ 𝐴 ({𝑥} × 𝐵) ∈ V) |
12 | ssexg 4128 | . . 3 ⊢ ((dom 𝐹 ⊆ ∪ 𝑥 ∈ 𝐴 ({𝑥} × 𝐵) ∧ ∪ 𝑥 ∈ 𝐴 ({𝑥} × 𝐵) ∈ V) → dom 𝐹 ∈ V) | |
13 | 3, 11, 12 | sylancr 412 | . 2 ⊢ ((𝐴 ∈ 𝑅 ∧ ∀𝑥 ∈ 𝐴 𝐵 ∈ 𝑆) → dom 𝐹 ∈ V) |
14 | funex 5719 | . 2 ⊢ ((Fun 𝐹 ∧ dom 𝐹 ∈ V) → 𝐹 ∈ V) | |
15 | 2, 13, 14 | sylancr 412 | 1 ⊢ ((𝐴 ∈ 𝑅 ∧ ∀𝑥 ∈ 𝐴 𝐵 ∈ 𝑆) → 𝐹 ∈ V) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 = wceq 1348 ∈ wcel 2141 ∀wral 2448 Vcvv 2730 ⊆ wss 3121 {csn 3583 ∪ ciun 3873 × cxp 4609 dom cdm 4611 Fun wfun 5192 ∈ cmpo 5855 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-coll 4104 ax-sep 4107 ax-pow 4160 ax-pr 4194 ax-un 4418 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rex 2454 df-reu 2455 df-rab 2457 df-v 2732 df-sbc 2956 df-csb 3050 df-un 3125 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-iun 3875 df-br 3990 df-opab 4051 df-mpt 4052 df-id 4278 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-rn 4622 df-res 4623 df-ima 4624 df-iota 5160 df-fun 5200 df-fn 5201 df-f 5202 df-f1 5203 df-fo 5204 df-f1o 5205 df-fv 5206 df-oprab 5857 df-mpo 5858 df-1st 6119 df-2nd 6120 |
This theorem is referenced by: mpoexg 6190 mpoex 6193 |
Copyright terms: Public domain | W3C validator |