ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mpoexxg GIF version

Theorem mpoexxg 6062
Description: Existence of an operation class abstraction (version for dependent domains). (Contributed by Mario Carneiro, 30-Dec-2016.)
Hypothesis
Ref Expression
mpoexg.1 𝐹 = (𝑥𝐴, 𝑦𝐵𝐶)
Assertion
Ref Expression
mpoexxg ((𝐴𝑅 ∧ ∀𝑥𝐴 𝐵𝑆) → 𝐹 ∈ V)
Distinct variable groups:   𝑥,𝐴,𝑦   𝑦,𝐵
Allowed substitution hints:   𝐵(𝑥)   𝐶(𝑥,𝑦)   𝑅(𝑥,𝑦)   𝑆(𝑥,𝑦)   𝐹(𝑥,𝑦)

Proof of Theorem mpoexxg
StepHypRef Expression
1 mpoexg.1 . . 3 𝐹 = (𝑥𝐴, 𝑦𝐵𝐶)
21mpofun 5827 . 2 Fun 𝐹
31dmmpossx 6051 . . 3 dom 𝐹 𝑥𝐴 ({𝑥} × 𝐵)
4 vex 2660 . . . . . . 7 𝑥 ∈ V
5 snexg 4068 . . . . . . 7 (𝑥 ∈ V → {𝑥} ∈ V)
64, 5ax-mp 7 . . . . . 6 {𝑥} ∈ V
7 xpexg 4613 . . . . . 6 (({𝑥} ∈ V ∧ 𝐵𝑆) → ({𝑥} × 𝐵) ∈ V)
86, 7mpan 418 . . . . 5 (𝐵𝑆 → ({𝑥} × 𝐵) ∈ V)
98ralimi 2469 . . . 4 (∀𝑥𝐴 𝐵𝑆 → ∀𝑥𝐴 ({𝑥} × 𝐵) ∈ V)
10 iunexg 5971 . . . 4 ((𝐴𝑅 ∧ ∀𝑥𝐴 ({𝑥} × 𝐵) ∈ V) → 𝑥𝐴 ({𝑥} × 𝐵) ∈ V)
119, 10sylan2 282 . . 3 ((𝐴𝑅 ∧ ∀𝑥𝐴 𝐵𝑆) → 𝑥𝐴 ({𝑥} × 𝐵) ∈ V)
12 ssexg 4027 . . 3 ((dom 𝐹 𝑥𝐴 ({𝑥} × 𝐵) ∧ 𝑥𝐴 ({𝑥} × 𝐵) ∈ V) → dom 𝐹 ∈ V)
133, 11, 12sylancr 408 . 2 ((𝐴𝑅 ∧ ∀𝑥𝐴 𝐵𝑆) → dom 𝐹 ∈ V)
14 funex 5597 . 2 ((Fun 𝐹 ∧ dom 𝐹 ∈ V) → 𝐹 ∈ V)
152, 13, 14sylancr 408 1 ((𝐴𝑅 ∧ ∀𝑥𝐴 𝐵𝑆) → 𝐹 ∈ V)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103   = wceq 1314  wcel 1463  wral 2390  Vcvv 2657  wss 3037  {csn 3493   ciun 3779   × cxp 4497  dom cdm 4499  Fun wfun 5075  cmpo 5730
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 681  ax-5 1406  ax-7 1407  ax-gen 1408  ax-ie1 1452  ax-ie2 1453  ax-8 1465  ax-10 1466  ax-11 1467  ax-i12 1468  ax-bndl 1469  ax-4 1470  ax-13 1474  ax-14 1475  ax-17 1489  ax-i9 1493  ax-ial 1497  ax-i5r 1498  ax-ext 2097  ax-coll 4003  ax-sep 4006  ax-pow 4058  ax-pr 4091  ax-un 4315
This theorem depends on definitions:  df-bi 116  df-3an 947  df-tru 1317  df-nf 1420  df-sb 1719  df-eu 1978  df-mo 1979  df-clab 2102  df-cleq 2108  df-clel 2111  df-nfc 2244  df-ral 2395  df-rex 2396  df-reu 2397  df-rab 2399  df-v 2659  df-sbc 2879  df-csb 2972  df-un 3041  df-in 3043  df-ss 3050  df-pw 3478  df-sn 3499  df-pr 3500  df-op 3502  df-uni 3703  df-iun 3781  df-br 3896  df-opab 3950  df-mpt 3951  df-id 4175  df-xp 4505  df-rel 4506  df-cnv 4507  df-co 4508  df-dm 4509  df-rn 4510  df-res 4511  df-ima 4512  df-iota 5046  df-fun 5083  df-fn 5084  df-f 5085  df-f1 5086  df-fo 5087  df-f1o 5088  df-fv 5089  df-oprab 5732  df-mpo 5733  df-1st 5992  df-2nd 5993
This theorem is referenced by:  mpoexg  6063  mpoex  6065
  Copyright terms: Public domain W3C validator