ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mpoexxg GIF version

Theorem mpoexxg 6319
Description: Existence of an operation class abstraction (version for dependent domains). (Contributed by Mario Carneiro, 30-Dec-2016.)
Hypothesis
Ref Expression
mpoexg.1 𝐹 = (𝑥𝐴, 𝑦𝐵𝐶)
Assertion
Ref Expression
mpoexxg ((𝐴𝑅 ∧ ∀𝑥𝐴 𝐵𝑆) → 𝐹 ∈ V)
Distinct variable groups:   𝑥,𝐴,𝑦   𝑦,𝐵
Allowed substitution hints:   𝐵(𝑥)   𝐶(𝑥,𝑦)   𝑅(𝑥,𝑦)   𝑆(𝑥,𝑦)   𝐹(𝑥,𝑦)

Proof of Theorem mpoexxg
StepHypRef Expression
1 mpoexg.1 . . 3 𝐹 = (𝑥𝐴, 𝑦𝐵𝐶)
21mpofun 6070 . 2 Fun 𝐹
31dmmpossx 6308 . . 3 dom 𝐹 𝑥𝐴 ({𝑥} × 𝐵)
4 vex 2779 . . . . . . 7 𝑥 ∈ V
5 snexg 4244 . . . . . . 7 (𝑥 ∈ V → {𝑥} ∈ V)
64, 5ax-mp 5 . . . . . 6 {𝑥} ∈ V
7 xpexg 4807 . . . . . 6 (({𝑥} ∈ V ∧ 𝐵𝑆) → ({𝑥} × 𝐵) ∈ V)
86, 7mpan 424 . . . . 5 (𝐵𝑆 → ({𝑥} × 𝐵) ∈ V)
98ralimi 2571 . . . 4 (∀𝑥𝐴 𝐵𝑆 → ∀𝑥𝐴 ({𝑥} × 𝐵) ∈ V)
10 iunexg 6227 . . . 4 ((𝐴𝑅 ∧ ∀𝑥𝐴 ({𝑥} × 𝐵) ∈ V) → 𝑥𝐴 ({𝑥} × 𝐵) ∈ V)
119, 10sylan2 286 . . 3 ((𝐴𝑅 ∧ ∀𝑥𝐴 𝐵𝑆) → 𝑥𝐴 ({𝑥} × 𝐵) ∈ V)
12 ssexg 4199 . . 3 ((dom 𝐹 𝑥𝐴 ({𝑥} × 𝐵) ∧ 𝑥𝐴 ({𝑥} × 𝐵) ∈ V) → dom 𝐹 ∈ V)
133, 11, 12sylancr 414 . 2 ((𝐴𝑅 ∧ ∀𝑥𝐴 𝐵𝑆) → dom 𝐹 ∈ V)
14 funex 5830 . 2 ((Fun 𝐹 ∧ dom 𝐹 ∈ V) → 𝐹 ∈ V)
152, 13, 14sylancr 414 1 ((𝐴𝑅 ∧ ∀𝑥𝐴 𝐵𝑆) → 𝐹 ∈ V)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1373  wcel 2178  wral 2486  Vcvv 2776  wss 3174  {csn 3643   ciun 3941   × cxp 4691  dom cdm 4693  Fun wfun 5284  cmpo 5969
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-coll 4175  ax-sep 4178  ax-pow 4234  ax-pr 4269  ax-un 4498
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ral 2491  df-rex 2492  df-reu 2493  df-rab 2495  df-v 2778  df-sbc 3006  df-csb 3102  df-un 3178  df-in 3180  df-ss 3187  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-iun 3943  df-br 4060  df-opab 4122  df-mpt 4123  df-id 4358  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-res 4705  df-ima 4706  df-iota 5251  df-fun 5292  df-fn 5293  df-f 5294  df-f1 5295  df-fo 5296  df-f1o 5297  df-fv 5298  df-oprab 5971  df-mpo 5972  df-1st 6249  df-2nd 6250
This theorem is referenced by:  mpoexg  6320  mpoex  6323
  Copyright terms: Public domain W3C validator