ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  oprssdmm GIF version

Theorem oprssdmm 6139
Description: Domain of closure of an operation. (Contributed by Jim Kingdon, 23-Oct-2023.)
Hypotheses
Ref Expression
oprssdmm.m ((𝜑𝑢𝑆) → ∃𝑣 𝑣𝑢)
oprssdmm.cl ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥𝐹𝑦) ∈ 𝑆)
oprssdmm.f (𝜑 → Rel 𝐹)
Assertion
Ref Expression
oprssdmm (𝜑 → (𝑆 × 𝑆) ⊆ dom 𝐹)
Distinct variable groups:   𝑢,𝐹,𝑣,𝑥,𝑦   𝑢,𝑆,𝑥,𝑦   𝜑,𝑢,𝑥,𝑦
Allowed substitution hints:   𝜑(𝑣)   𝑆(𝑣)

Proof of Theorem oprssdmm
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 elxp6 6137 . . . . . . 7 (𝑧 ∈ (𝑆 × 𝑆) ↔ (𝑧 = ⟨(1st𝑧), (2nd𝑧)⟩ ∧ ((1st𝑧) ∈ 𝑆 ∧ (2nd𝑧) ∈ 𝑆)))
21biimpi 119 . . . . . 6 (𝑧 ∈ (𝑆 × 𝑆) → (𝑧 = ⟨(1st𝑧), (2nd𝑧)⟩ ∧ ((1st𝑧) ∈ 𝑆 ∧ (2nd𝑧) ∈ 𝑆)))
32adantl 275 . . . . 5 ((𝜑𝑧 ∈ (𝑆 × 𝑆)) → (𝑧 = ⟨(1st𝑧), (2nd𝑧)⟩ ∧ ((1st𝑧) ∈ 𝑆 ∧ (2nd𝑧) ∈ 𝑆)))
43simpld 111 . . . 4 ((𝜑𝑧 ∈ (𝑆 × 𝑆)) → 𝑧 = ⟨(1st𝑧), (2nd𝑧)⟩)
53simprd 113 . . . . 5 ((𝜑𝑧 ∈ (𝑆 × 𝑆)) → ((1st𝑧) ∈ 𝑆 ∧ (2nd𝑧) ∈ 𝑆))
6 oprssdmm.f . . . . . . . . 9 (𝜑 → Rel 𝐹)
76adantr 274 . . . . . . . 8 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → Rel 𝐹)
8 eleq2 2230 . . . . . . . . . 10 (𝑢 = (𝐹‘⟨𝑥, 𝑦⟩) → (𝑣𝑢𝑣 ∈ (𝐹‘⟨𝑥, 𝑦⟩)))
98exbidv 1813 . . . . . . . . 9 (𝑢 = (𝐹‘⟨𝑥, 𝑦⟩) → (∃𝑣 𝑣𝑢 ↔ ∃𝑣 𝑣 ∈ (𝐹‘⟨𝑥, 𝑦⟩)))
10 oprssdmm.m . . . . . . . . . . 11 ((𝜑𝑢𝑆) → ∃𝑣 𝑣𝑢)
1110ralrimiva 2539 . . . . . . . . . 10 (𝜑 → ∀𝑢𝑆𝑣 𝑣𝑢)
1211adantr 274 . . . . . . . . 9 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → ∀𝑢𝑆𝑣 𝑣𝑢)
13 df-ov 5845 . . . . . . . . . 10 (𝑥𝐹𝑦) = (𝐹‘⟨𝑥, 𝑦⟩)
14 oprssdmm.cl . . . . . . . . . 10 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥𝐹𝑦) ∈ 𝑆)
1513, 14eqeltrrid 2254 . . . . . . . . 9 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝐹‘⟨𝑥, 𝑦⟩) ∈ 𝑆)
169, 12, 15rspcdva 2835 . . . . . . . 8 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → ∃𝑣 𝑣 ∈ (𝐹‘⟨𝑥, 𝑦⟩))
17 relelfvdm 5518 . . . . . . . . . 10 ((Rel 𝐹𝑣 ∈ (𝐹‘⟨𝑥, 𝑦⟩)) → ⟨𝑥, 𝑦⟩ ∈ dom 𝐹)
1817ex 114 . . . . . . . . 9 (Rel 𝐹 → (𝑣 ∈ (𝐹‘⟨𝑥, 𝑦⟩) → ⟨𝑥, 𝑦⟩ ∈ dom 𝐹))
1918exlimdv 1807 . . . . . . . 8 (Rel 𝐹 → (∃𝑣 𝑣 ∈ (𝐹‘⟨𝑥, 𝑦⟩) → ⟨𝑥, 𝑦⟩ ∈ dom 𝐹))
207, 16, 19sylc 62 . . . . . . 7 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → ⟨𝑥, 𝑦⟩ ∈ dom 𝐹)
2120ralrimivva 2548 . . . . . 6 (𝜑 → ∀𝑥𝑆𝑦𝑆𝑥, 𝑦⟩ ∈ dom 𝐹)
2221adantr 274 . . . . 5 ((𝜑𝑧 ∈ (𝑆 × 𝑆)) → ∀𝑥𝑆𝑦𝑆𝑥, 𝑦⟩ ∈ dom 𝐹)
23 opeq1 3758 . . . . . . 7 (𝑥 = (1st𝑧) → ⟨𝑥, 𝑦⟩ = ⟨(1st𝑧), 𝑦⟩)
2423eleq1d 2235 . . . . . 6 (𝑥 = (1st𝑧) → (⟨𝑥, 𝑦⟩ ∈ dom 𝐹 ↔ ⟨(1st𝑧), 𝑦⟩ ∈ dom 𝐹))
25 opeq2 3759 . . . . . . 7 (𝑦 = (2nd𝑧) → ⟨(1st𝑧), 𝑦⟩ = ⟨(1st𝑧), (2nd𝑧)⟩)
2625eleq1d 2235 . . . . . 6 (𝑦 = (2nd𝑧) → (⟨(1st𝑧), 𝑦⟩ ∈ dom 𝐹 ↔ ⟨(1st𝑧), (2nd𝑧)⟩ ∈ dom 𝐹))
2724, 26rspc2va 2844 . . . . 5 ((((1st𝑧) ∈ 𝑆 ∧ (2nd𝑧) ∈ 𝑆) ∧ ∀𝑥𝑆𝑦𝑆𝑥, 𝑦⟩ ∈ dom 𝐹) → ⟨(1st𝑧), (2nd𝑧)⟩ ∈ dom 𝐹)
285, 22, 27syl2anc 409 . . . 4 ((𝜑𝑧 ∈ (𝑆 × 𝑆)) → ⟨(1st𝑧), (2nd𝑧)⟩ ∈ dom 𝐹)
294, 28eqeltrd 2243 . . 3 ((𝜑𝑧 ∈ (𝑆 × 𝑆)) → 𝑧 ∈ dom 𝐹)
3029ex 114 . 2 (𝜑 → (𝑧 ∈ (𝑆 × 𝑆) → 𝑧 ∈ dom 𝐹))
3130ssrdv 3148 1 (𝜑 → (𝑆 × 𝑆) ⊆ dom 𝐹)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103   = wceq 1343  wex 1480  wcel 2136  wral 2444  wss 3116  cop 3579   × cxp 4602  dom cdm 4604  Rel wrel 4609  cfv 5188  (class class class)co 5842  1st c1st 6106  2nd c2nd 6107
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187  ax-un 4411
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rex 2450  df-v 2728  df-sbc 2952  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-br 3983  df-opab 4044  df-mpt 4045  df-id 4271  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-iota 5153  df-fun 5190  df-fv 5196  df-ov 5845  df-1st 6108  df-2nd 6109
This theorem is referenced by:  axaddf  7809  axmulf  7810
  Copyright terms: Public domain W3C validator