ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  oprssdmm GIF version

Theorem oprssdmm 6323
Description: Domain of closure of an operation. (Contributed by Jim Kingdon, 23-Oct-2023.)
Hypotheses
Ref Expression
oprssdmm.m ((𝜑𝑢𝑆) → ∃𝑣 𝑣𝑢)
oprssdmm.cl ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥𝐹𝑦) ∈ 𝑆)
oprssdmm.f (𝜑 → Rel 𝐹)
Assertion
Ref Expression
oprssdmm (𝜑 → (𝑆 × 𝑆) ⊆ dom 𝐹)
Distinct variable groups:   𝑢,𝐹,𝑣,𝑥,𝑦   𝑢,𝑆,𝑥,𝑦   𝜑,𝑢,𝑥,𝑦
Allowed substitution hints:   𝜑(𝑣)   𝑆(𝑣)

Proof of Theorem oprssdmm
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 elxp6 6321 . . . . . . 7 (𝑧 ∈ (𝑆 × 𝑆) ↔ (𝑧 = ⟨(1st𝑧), (2nd𝑧)⟩ ∧ ((1st𝑧) ∈ 𝑆 ∧ (2nd𝑧) ∈ 𝑆)))
21biimpi 120 . . . . . 6 (𝑧 ∈ (𝑆 × 𝑆) → (𝑧 = ⟨(1st𝑧), (2nd𝑧)⟩ ∧ ((1st𝑧) ∈ 𝑆 ∧ (2nd𝑧) ∈ 𝑆)))
32adantl 277 . . . . 5 ((𝜑𝑧 ∈ (𝑆 × 𝑆)) → (𝑧 = ⟨(1st𝑧), (2nd𝑧)⟩ ∧ ((1st𝑧) ∈ 𝑆 ∧ (2nd𝑧) ∈ 𝑆)))
43simpld 112 . . . 4 ((𝜑𝑧 ∈ (𝑆 × 𝑆)) → 𝑧 = ⟨(1st𝑧), (2nd𝑧)⟩)
53simprd 114 . . . . 5 ((𝜑𝑧 ∈ (𝑆 × 𝑆)) → ((1st𝑧) ∈ 𝑆 ∧ (2nd𝑧) ∈ 𝑆))
6 oprssdmm.f . . . . . . . . 9 (𝜑 → Rel 𝐹)
76adantr 276 . . . . . . . 8 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → Rel 𝐹)
8 eleq2 2293 . . . . . . . . . 10 (𝑢 = (𝐹‘⟨𝑥, 𝑦⟩) → (𝑣𝑢𝑣 ∈ (𝐹‘⟨𝑥, 𝑦⟩)))
98exbidv 1871 . . . . . . . . 9 (𝑢 = (𝐹‘⟨𝑥, 𝑦⟩) → (∃𝑣 𝑣𝑢 ↔ ∃𝑣 𝑣 ∈ (𝐹‘⟨𝑥, 𝑦⟩)))
10 oprssdmm.m . . . . . . . . . . 11 ((𝜑𝑢𝑆) → ∃𝑣 𝑣𝑢)
1110ralrimiva 2603 . . . . . . . . . 10 (𝜑 → ∀𝑢𝑆𝑣 𝑣𝑢)
1211adantr 276 . . . . . . . . 9 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → ∀𝑢𝑆𝑣 𝑣𝑢)
13 df-ov 6010 . . . . . . . . . 10 (𝑥𝐹𝑦) = (𝐹‘⟨𝑥, 𝑦⟩)
14 oprssdmm.cl . . . . . . . . . 10 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥𝐹𝑦) ∈ 𝑆)
1513, 14eqeltrrid 2317 . . . . . . . . 9 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝐹‘⟨𝑥, 𝑦⟩) ∈ 𝑆)
169, 12, 15rspcdva 2912 . . . . . . . 8 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → ∃𝑣 𝑣 ∈ (𝐹‘⟨𝑥, 𝑦⟩))
17 relelfvdm 5661 . . . . . . . . . 10 ((Rel 𝐹𝑣 ∈ (𝐹‘⟨𝑥, 𝑦⟩)) → ⟨𝑥, 𝑦⟩ ∈ dom 𝐹)
1817ex 115 . . . . . . . . 9 (Rel 𝐹 → (𝑣 ∈ (𝐹‘⟨𝑥, 𝑦⟩) → ⟨𝑥, 𝑦⟩ ∈ dom 𝐹))
1918exlimdv 1865 . . . . . . . 8 (Rel 𝐹 → (∃𝑣 𝑣 ∈ (𝐹‘⟨𝑥, 𝑦⟩) → ⟨𝑥, 𝑦⟩ ∈ dom 𝐹))
207, 16, 19sylc 62 . . . . . . 7 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → ⟨𝑥, 𝑦⟩ ∈ dom 𝐹)
2120ralrimivva 2612 . . . . . 6 (𝜑 → ∀𝑥𝑆𝑦𝑆𝑥, 𝑦⟩ ∈ dom 𝐹)
2221adantr 276 . . . . 5 ((𝜑𝑧 ∈ (𝑆 × 𝑆)) → ∀𝑥𝑆𝑦𝑆𝑥, 𝑦⟩ ∈ dom 𝐹)
23 opeq1 3857 . . . . . . 7 (𝑥 = (1st𝑧) → ⟨𝑥, 𝑦⟩ = ⟨(1st𝑧), 𝑦⟩)
2423eleq1d 2298 . . . . . 6 (𝑥 = (1st𝑧) → (⟨𝑥, 𝑦⟩ ∈ dom 𝐹 ↔ ⟨(1st𝑧), 𝑦⟩ ∈ dom 𝐹))
25 opeq2 3858 . . . . . . 7 (𝑦 = (2nd𝑧) → ⟨(1st𝑧), 𝑦⟩ = ⟨(1st𝑧), (2nd𝑧)⟩)
2625eleq1d 2298 . . . . . 6 (𝑦 = (2nd𝑧) → (⟨(1st𝑧), 𝑦⟩ ∈ dom 𝐹 ↔ ⟨(1st𝑧), (2nd𝑧)⟩ ∈ dom 𝐹))
2724, 26rspc2va 2921 . . . . 5 ((((1st𝑧) ∈ 𝑆 ∧ (2nd𝑧) ∈ 𝑆) ∧ ∀𝑥𝑆𝑦𝑆𝑥, 𝑦⟩ ∈ dom 𝐹) → ⟨(1st𝑧), (2nd𝑧)⟩ ∈ dom 𝐹)
285, 22, 27syl2anc 411 . . . 4 ((𝜑𝑧 ∈ (𝑆 × 𝑆)) → ⟨(1st𝑧), (2nd𝑧)⟩ ∈ dom 𝐹)
294, 28eqeltrd 2306 . . 3 ((𝜑𝑧 ∈ (𝑆 × 𝑆)) → 𝑧 ∈ dom 𝐹)
3029ex 115 . 2 (𝜑 → (𝑧 ∈ (𝑆 × 𝑆) → 𝑧 ∈ dom 𝐹))
3130ssrdv 3230 1 (𝜑 → (𝑆 × 𝑆) ⊆ dom 𝐹)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1395  wex 1538  wcel 2200  wral 2508  wss 3197  cop 3669   × cxp 4717  dom cdm 4719  Rel wrel 4724  cfv 5318  (class class class)co 6007  1st c1st 6290  2nd c2nd 6291
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293  ax-un 4524
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-v 2801  df-sbc 3029  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-br 4084  df-opab 4146  df-mpt 4147  df-id 4384  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-iota 5278  df-fun 5320  df-fv 5326  df-ov 6010  df-1st 6292  df-2nd 6293
This theorem is referenced by:  axaddf  8063  axmulf  8064
  Copyright terms: Public domain W3C validator