| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > pr1or2 | Unicode version | ||
| Description: An unordered pair, with decidable equality for the specified elements, has either one or two elements. (Contributed by Jim Kingdon, 7-Jan-2026.) |
| Ref | Expression |
|---|---|
| pr1or2 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dcne 2388 |
. . 3
| |
| 2 | enpr1g 6900 |
. . . . . . 7
| |
| 3 | 2 | ad2antrr 488 |
. . . . . 6
|
| 4 | preq2 3713 |
. . . . . . . 8
| |
| 5 | 4 | breq1d 4058 |
. . . . . . 7
|
| 6 | 5 | adantl 277 |
. . . . . 6
|
| 7 | 3, 6 | mpbid 147 |
. . . . 5
|
| 8 | 7 | orcd 735 |
. . . 4
|
| 9 | pr2ne 7312 |
. . . . . 6
| |
| 10 | 9 | biimpar 297 |
. . . . 5
|
| 11 | 10 | olcd 736 |
. . . 4
|
| 12 | 8, 11 | jaodan 799 |
. . 3
|
| 13 | 1, 12 | sylan2b 287 |
. 2
|
| 14 | 13 | 3impa 1197 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-sep 4167 ax-nul 4175 ax-pow 4223 ax-pr 4258 ax-un 4485 ax-setind 4590 ax-iinf 4641 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-ral 2490 df-rex 2491 df-reu 2492 df-rab 2494 df-v 2775 df-sbc 3001 df-dif 3170 df-un 3172 df-in 3174 df-ss 3181 df-nul 3463 df-pw 3620 df-sn 3641 df-pr 3642 df-op 3644 df-uni 3854 df-int 3889 df-br 4049 df-opab 4111 df-tr 4148 df-id 4345 df-iord 4418 df-on 4420 df-suc 4423 df-iom 4644 df-xp 4686 df-rel 4687 df-cnv 4688 df-co 4689 df-dm 4690 df-rn 4691 df-res 4692 df-ima 4693 df-iota 5238 df-fun 5279 df-fn 5280 df-f 5281 df-f1 5282 df-fo 5283 df-f1o 5284 df-fv 5285 df-1o 6512 df-2o 6513 df-er 6630 df-en 6838 |
| This theorem is referenced by: upgr1elem1 15763 |
| Copyright terms: Public domain | W3C validator |