ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pr1or2 Unicode version

Theorem pr1or2 7355
Description: An unordered pair, with decidable equality for the specified elements, has either one or two elements. (Contributed by Jim Kingdon, 7-Jan-2026.)
Assertion
Ref Expression
pr1or2  |-  ( ( A  e.  C  /\  B  e.  D  /\ DECID  A  =  B )  ->  ( { A ,  B }  ~~  1o  \/  { A ,  B }  ~~  2o ) )

Proof of Theorem pr1or2
StepHypRef Expression
1 dcne 2411 . . 3  |-  (DECID  A  =  B  <->  ( A  =  B  \/  A  =/= 
B ) )
2 enpr1g 6940 . . . . . . 7  |-  ( A  e.  C  ->  { A ,  A }  ~~  1o )
32ad2antrr 488 . . . . . 6  |-  ( ( ( A  e.  C  /\  B  e.  D
)  /\  A  =  B )  ->  { A ,  A }  ~~  1o )
4 preq2 3744 . . . . . . . 8  |-  ( A  =  B  ->  { A ,  A }  =  { A ,  B }
)
54breq1d 4092 . . . . . . 7  |-  ( A  =  B  ->  ( { A ,  A }  ~~  1o  <->  { A ,  B }  ~~  1o ) )
65adantl 277 . . . . . 6  |-  ( ( ( A  e.  C  /\  B  e.  D
)  /\  A  =  B )  ->  ( { A ,  A }  ~~  1o  <->  { A ,  B }  ~~  1o ) )
73, 6mpbid 147 . . . . 5  |-  ( ( ( A  e.  C  /\  B  e.  D
)  /\  A  =  B )  ->  { A ,  B }  ~~  1o )
87orcd 738 . . . 4  |-  ( ( ( A  e.  C  /\  B  e.  D
)  /\  A  =  B )  ->  ( { A ,  B }  ~~  1o  \/  { A ,  B }  ~~  2o ) )
9 pr2ne 7353 . . . . . 6  |-  ( ( A  e.  C  /\  B  e.  D )  ->  ( { A ,  B }  ~~  2o  <->  A  =/=  B ) )
109biimpar 297 . . . . 5  |-  ( ( ( A  e.  C  /\  B  e.  D
)  /\  A  =/=  B )  ->  { A ,  B }  ~~  2o )
1110olcd 739 . . . 4  |-  ( ( ( A  e.  C  /\  B  e.  D
)  /\  A  =/=  B )  ->  ( { A ,  B }  ~~  1o  \/  { A ,  B }  ~~  2o ) )
128, 11jaodan 802 . . 3  |-  ( ( ( A  e.  C  /\  B  e.  D
)  /\  ( A  =  B  \/  A  =/=  B ) )  -> 
( { A ,  B }  ~~  1o  \/  { A ,  B }  ~~  2o ) )
131, 12sylan2b 287 . 2  |-  ( ( ( A  e.  C  /\  B  e.  D
)  /\ DECID  A  =  B
)  ->  ( { A ,  B }  ~~  1o  \/  { A ,  B }  ~~  2o ) )
14133impa 1218 1  |-  ( ( A  e.  C  /\  B  e.  D  /\ DECID  A  =  B )  ->  ( { A ,  B }  ~~  1o  \/  { A ,  B }  ~~  2o ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 713  DECID wdc 839    /\ w3a 1002    = wceq 1395    e. wcel 2200    =/= wne 2400   {cpr 3667   class class class wbr 4082   1oc1o 6545   2oc2o 6546    ~~ cen 6875
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-nul 4209  ax-pow 4257  ax-pr 4292  ax-un 4521  ax-setind 4626  ax-iinf 4677
This theorem depends on definitions:  df-bi 117  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-br 4083  df-opab 4145  df-tr 4182  df-id 4381  df-iord 4454  df-on 4456  df-suc 4459  df-iom 4680  df-xp 4722  df-rel 4723  df-cnv 4724  df-co 4725  df-dm 4726  df-rn 4727  df-res 4728  df-ima 4729  df-iota 5274  df-fun 5316  df-fn 5317  df-f 5318  df-f1 5319  df-fo 5320  df-f1o 5321  df-fv 5322  df-1o 6552  df-2o 6553  df-er 6670  df-en 6878
This theorem is referenced by:  upgr1elem1  15905
  Copyright terms: Public domain W3C validator